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Over the last few years there has been resurgence in the popularity of stochastic games.
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required theory and then implementing it to see how well gameplay within the environment
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Chapter 1

Introduction

1.1 Reinforcement Learning

Reinforcement learning is a large expanse of topics that covers many methods of model free

and model based learning, usually in an attempt to optimize solutions for environments

in the real world. It has shown prior success in many fields such as but not limited to

developing agents for trading in competitive markets such as Forex and the stock market

[1; 2]. Video game environments, such as in the works of [3; 4]. Reinforcement Learning

(RL) algorithms and practices have been a staple in environment simulation and decision

optimization problems for a very long time, however the recent boom in Machine learning

have brought back an interest in both classical reinforcement learning methods as well as

novel ideas that try and optimize both.

Figure 1.1: A broad overview of the various fields within Reinforcement Learning (RL)
Source: https://miro.medium.com/max/1400/1*BsN4a2N1EDmgG19wWDd9CQ.png
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1.2 Motivation

Our objective in undertaking this project is to better understand classical Reinforcement

Learning methods, in particular, this dissertation will heavily focus on Markov Decision

Processes and Value Iteration algorithms to understand and optimize solutions for an

environment simulating Blackjack. The motivation behind choosing Blackjack, also known

as 21, is due to its popularity and because it provides a low barrier of entry thereby

allowing us to spend the majority of our time in trying to optimize for its well understood

states and solutions. The goals of this dissertation are as follows:

• Conduct a heavy study on Markov Decision Processes and understand their algo-

rithms both from a mathematical and computer science perspective.

• Research the value iteration algorithm particularly well and describe in detail the

process during this project.

• Define an MDP environment for simulating Blackjack.

• Perform value iteration in a blackjack environment to develop optimal strategies

and evaluate its success.

1.3 Flow of Project

In this section we describe how the rest of this project has been organized.

Chapter 2: State of the Art

In the state of the art we deeply explore Markov Decision Processes, we develop an

understanding through precise use of the mathematics behind MDP’s as well as providing

algorithms for them.

Chapter 3: Design

In the Design, we explain the variation of Blackjack we have chosen for this project, we

then explore how blackjack can be simulated as an MDP.

Chapter 4: Implementation

In the Implementation we try and explain some of the code behind how we have imple-

mented the Markov Decision Processes.
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Chapter 5: Evaluation

In the Evaluation, we provide a deep overview of the results of our experiments as well

as our detailed results showing how well our models were optimized.

Chapter 6: Conclusion and Future Works

Finally in the conclusion, we provide some some thoughts on this dissertation as a whole

and discuss how well we achieved our goals as well as providing some ideas for how these

works could have been extended in the future.
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Chapter 2

State of the Art

In this chapter we will introduce the Markov Decision Processes (MDP) a core Rein-

forcement Learning (RL) concept that will be crucial to our exploration in this report.

We will explore the workings of a Markov Decision Process in depth while also covering

other Reinforcement Learning concepts and drawbacks. At the end of the chapter we will

provide a review of some of the closely related Literature for our topic.

2.1 Markov Decision Processes

Markov Decision Processes are an extension of Markov Chains introduced by Andrey

Markov [5], they differ from one another since Markov Decision Processes require both

actions and rewards as well, in the absence of those two factors, Markov Decision Processes

can be reduced to Markov Chains. Markov Decision Processes help us model stochastic

environments which consist of a finite number of states, actions, and rewards for those

states and actions. With the use of Markov Decision Processes we can find optimal

strategies/policies and find the optimal action to take in any given scenario within that

environment.

2.1.1 Defining an MDP

To define any Markov Decision Process we require a set of parameters that will define the

MDP. First, we naturally require an environment or game we are trying to model, we can

then define S to be the finite set of all states that the environment/game can be in. We

can also define A to be the finite set of all actions that an agent acting in the environment

can take. Thus, when we set up an MDP we will have an agent which will act on the

environment for us, the agent acts on the environment at time t by taking some action

at ∈ A while the environment is in some state st ∈ S which causes the environment to

4



Figure 2.1: An Agents interaction with an Environment in a Markov Decision Process

transition to some state st+1 ∈ S thereby causing a change in the environment. The agent

continues to act on the environment by taking actions and moving to a new state until

a predetermined time or until it reaches a terminal state. An overview of the operation

of a Markov Decision Process is shown in Fig. 2.1. You may also notice that Fig. 2.1

contains the symbol rt and rt+1, this symbol corresponds to the rewards at time t and

t+ 1 respectively and we will elaborate on it further in the following sections.

2.1.2 Transitions

As shown in Fig. 2.1, after an agent acts on an environment in state st the environment

transitions to state st+1, please note that states st and st+1 can be the same state. To define

the chances of transitioning between states after an action let us define s, s′ ∈ S, once again

we have a ∈ A, we can then define T (s, a, s′) to be the transition function/probability

that returns the probability of transitioning from state s to state s′ after an agent takes

action a, as can be seen by Eqn. 2.1. As can be seen by this, transitioning from one state

to another depends only on the previous state and the action taken. Thus we have Eqn.

2.2, which surmises the fact that probability of transitioning to any next state depends

only on the current state and action.

T (s, a, s′) = P (St+1 = st+1|St = st, At = at) (2.1)
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P (St+1 = s′|St = st, At = at, St−1 = st−1, At−1 = at−1, ..., S0 = s0)

= P (St+1 = st+1|St = st, At = at) (2.2)

2.1.3 Rewards

Any Markov Decision Process also requires some motivation for the agent to make deci-

sions in an informed sense. To achieve this aim we also have rewards for transitioning

between states. Let us take s, s′ ∈ S, a ∈ A, we can then define R(s, a, s′) to be the

reward function for transitioning from state s to state s′ by performing actions a.

2.1.4 Objective

An agent acts in an environment with a specific objective, and that objective is usually

to maximise the reward over some time period. In this manner any action that yields

a positive reward within that time period will be considered a positive action, similarly

any action that yields a negative reward will yield a negative action. The objective of the

agent is usually to find the most optimal path within that time period in order to grant

the highest reward possible.

2.1.5 Discount Factor

There is one final parameter an agent must consider while it acts on an environment or

game, the discount factor, γ ∈ [0, 1]. The discount factor is applied to each reward in the

time step thereby decreasing the utility of awards at larger time steps. By introducing

a discount factor we can motivate the agent to take actions that are beneficial now as

opposed to indefinitely in the future. Having a high discount factor, usually γ ≥ 0.9, will

motivate the agent to think about the future, also known as a long horizon. Whereas, a

smaller discount factor will motivate an agent to act in the present and take the action

that will generate the highest reward currently, also known as a short horizon.

2.2 Solving Markov Decision Processes

So far we have established that a Markov Decision process can be defined by a 5 element

tuple, < S,A, T (s, a, s′), R(s, a, s′), γ >. Where S is the state space, A is the action

space, T (s, a, s′) defines the transition probability, R(s, a, s′) is the reward function, and

γ is the discount factor. An agent takes account of all these parameters and acts upon an
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environment thereby causing changes to the state of the environment and receives rewards

for the actions it takes. We will now explore how an agent can begin to act optimally,

primarily we will discuss how we can find optimal actions for every state, or an optimal

policy.

2.2.1 Policies and Value Functions

A policy, often denoted as π, can be referred to as a map from the state space to the action

space, π : S −→ A. That is, a policy instructs an agent on which action to given any

state π(s) = a ∀s ∈ S, a ∈ A. We can then define the value function Vπ(s) which returns

the expected utility of starting in state s and then following policy π. Vπ(s) is defined in

Eqn. 2.3, as can be seen, the value function is defined recursively and essentially provides

the expected value of the discounted rewards received from following policy π.

Vπ(s) =
∑
s′

T (s, π(s), s′)
(
R(s, π(s), s′) + γVπ(s

′)
)

(2.3)

Similarly, we can define the Q-Value function, Qπ(s, a) as shown in Eqn. 2.4. The

difference between the value function, 2.3, and the Q-Value function, 2.4, is that the Q-

Value function returns the expected reward of starting in state s, taking action a and

then following policy π.

Qπ(s, a) =
∑
s′

T (s, a, s′)
(
R(s, a, s′) + γVπ(s

′)
)

(2.4)

2.2.2 Optimal Solutions

Our objective in defining an MDP in the first place is to find the optimal solution to

problems, in that case, let us define π, π′ to be two distinct policies. We can then order

the policies based on their value function, Eqn. 2.5.

π ≥ π′ if Vπ(s) ≥ Vπ′(s) ∀s ∈ S (2.5)

This ordering of policies then allows us to define an optimal policy, π∗ which is greater

than or equal to all other policies, Eqn. 2.6

π∗ ≥ π ∀π (2.6)

We can then go back to the value function and assert that any value function that

follows the optimal policy must be an optimal value function, Eqn. 2.7.
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V∗(s) = Vπ∗(s) = max
π

Vπ(s) (2.7)

Now, if we recall that the optimal policy is obtained from following the actions that

maximizes the reward of the value function we get the Bellman Optimal Equation, Eqn.

2.8.

V∗(s) = max
a

∑
s′

T (s, a, s′)
(
R(s, a, s′) + γV∗(s

′)
)
= max

a
Q∗(s, a) (2.8)

We can also extract an optimal policy by optimizing over a ∈ A for Q∗(s, a), Eqn.

2.9.

π∗(s) = argmax
a

Q∗(s, a) (2.9)

2.3 Iterative Methods

Now that we have introduced the Bellman Equation, Eqn. 2.8 and discussed how an

optimal policy can be extracted, Eqn. 2.9 we can introduce the primary iterative methods

of arriving at these optimal solutions.

2.3.1 Value Iteration

Value iteration [6] is an recursive method, in which we modify the Bellman Optimal Equa-

tion, Eqn. 2.8, until the expected values from the iteration converge for all known states.

At this point we can ascertain that we have found an optimal solution for the environment.

The value iteration formula is slightly modified, Eqn. 2.10, from the Bellman Equation.

Vk+1(s)←− max
a

∑
s′

T (s, a, s′)
[
R(s, a, s′) + γVk(s

′)
]
, V0(s) = 0 ∀s ∈ S (2.10)

A step-by-step method to conducting value iteration is defined in Algorithm 1.

2.3.2 Policy Extraction

Policy extraction actually follows simply from Value Iteration, we can even perform both

in the same convergence and this is shown in Algorithm 2. It should be noted that the

policy might converge well before the values themselves converge.
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Algorithm 1: Algorithm for value iteration until convergence.

Input : S, A, T (s, a, s′), R(s, a, s′) ∀s, s′ ∈ S, a ∈ A, γ ∈ [0, 1]
Output: V∗(s) ∀s ∈ S

1 V0(s)←− 0, ∀s ∈ S ; /* Initialize V0(s) to be 0 for all possible

states within the state space */

2 k ←− 0 ; /* Set a variable k to count number of iterations */

3 while Vk+1(s), ∀s ∈ S has not converged do
4 Vk+1 ←− 0 ; /* Set the next iteration to 0, so it can be updated

during the loop */

5 foreach s ∈ S do
6 foreach a ∈ A do
7 Vπa(s)←− T (s, a, s′)

(
R(s, a, s′) + γVk(s)

)
; /* Calculate the

expected utility for this state and action */

8 end
9 Vk+1(s)←− max(Vπ(s)) ; /* Set the next value iteration value to

be the highest value found from all the available actions in

the current state */

10 end

11 end

2.3.3 Q-Learning

Q-Learning [7] provides another way for agents to act optimally within the environment

of a Markov Decision Process. The Q-learning method introduces a new parameter,

α ∈ (0, 1], which is the learning rate. This is also an iterative method that works as

shown in Eqn. 2.11.

Q(st, at) = Q(st, at) + α
(
rt + γmax

a
Q(st+1, a)−Q(st, at)

)
(2.11)

2.3.4 Challenges with Iterative Methods

There are a number of challenges that hinder Iterative methods and MDP’s in general

difficult at times.

High Cost

Usually, both the time and space complexity of an algorithm such as Value iteration can

be very costly. Especially if one doesn’t make attempts to reduce the State and/or action

space.
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Algorithm 2: Algorithm for value iteration and policy extraction.

Input : S, A, T (s, a, s′), R(s, a, s′) ∀s, s′ ∈ S, a ∈ A, γ ∈ [0, 1]
Output: V∗(s), π∗(s) ∀s ∈ S

1 V0(s)←− 0, ∀s ∈ S ; /* Initialize V0(s) to be 0 for all possible

states within the state space */

2 k ←− 0 ; /* Set a variable k to count number of iterations */

3 while Vk+1(s), ∀s ∈ S has not converged do
4 Vk+1 ←− 0 ; /* Set the next iteration to 0, so it can be updated

during the loop */

5 foreach s ∈ S do
6 foreach a ∈ A do
7 Vπa(s)←− T (s, a, s′)

(
R(s, a, s′) + γVk(s)

)
; /* Calculate the

expected utility for this state and action */

8 end
9 Vk+1(s)←− max(Vπ(s)) ; /* Set the next value iteration value to

be the highest value found from all the available actions in

the current state */

10 π∗(s)←− argmaxπ Vπ(s)

11 end

12 end

Difficult Implementation

In real world tasks, such as game theory or real world scenarios such as optimizing traffic,

the transition probabilities and/or frequencies are not easily deducible and we often have

to rely on Monte Carlo methods to simulate the situation and then extrapolate a proba-

bility density or function from those simulations. While these methods are quite reliable

in terms of their accuracy to the real world state, they do pose an even higher cost on an

already costly process.

2.4 Related Works

2.5 Works Utilizing Markov Decision Processes

There are a large number of works focusing on Markov Chains and Markov Decision

Processes. They are often used to investigate real world phenomenon such as weather

forecasting, stock prediction, and of course game theory optimization. Works such as[8]

explore the uses of Markovian processes for convertible bonds, [9] also consider Marko-

vian processes in different markets. Others like [10] discuss and associative criteria for

MDMDP’s (Mutually Dependent Markov Decision Processes). Moreover, [11], consider

10



how well MDP’s work in uncertain environments. The works of [12] consider some of the

drawbacks of MDP’s and try to propose a new look at improving their efficieny through

the use of alternating decision trees (AD Trees). Even military and rescue interests have

found MDP’s useful as [13] tries to use Markov Decision Problems to better understand

search and rescue tasks. Farming practices can also benefit from MDP’s as demonstrated

by the works of [14]. They have been clearly demonstrated to be useful in other fields

such as cyber security [15; 16], amongst many other works.

2.6 Works Exploring Stochastic Games and Environ-

ments

Stochastic games are also a large number of works specializing in the solving of Stochastic

Games such as chess [17; 18; 19; 20; 21], discrete time games and environments with

stochastic properties such as [22; 23; 24; 25; 26]. There are also a large number of works

which specialize specifically on Blackjack as has been done in this project as well [27;

28; 29]. Of these works, a number rely on Markov Processes, while some use other RL

methodologies and a few present ideas using neural networks and gradient based machine

learning.
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Chapter 3

Design

3.1 Blackjack

Blackjack, sometimes also referred to, is the chosen stochastic game we will try to optimize

for with our Reinforcement Learning (RL) agent. Blackjack is a very popular casino game

played throughout the world, usually with multiple regular decks of playing cards, one

may expect to know the rules of the game but due to the variations in play depending on

a country or casino, We have decided to highlight the rules of the game we will be using

for the experiments in this project.

3.1.1 Rules

Card Values

The total score of a player and dealer is decided by the value of the cards they hold, the

numbered cards 2-10 inclusive retain their numbered value. The face cards - Jack (J),

Queen (Q), King (K) - are all given a value of 10. The Ace (A) is a special card which

can take a value of either 1 or 11 depending on the situation of the game.

Objective

The objective of blackjack player is to have as high a score as possible using two or more

cards, however the score cannot exceed 21. If the combined score of a players hand is

higher than 21, then the player is considered to have gone bust and the player loses that

particular hand.

12



Gameplay

The gameplay of blackjack is quite straightforward, the game consists of one more players

and a dealer, for the purposes of this project, we will be dealing with one player, so we will

refer to a single player and agent henceforth. Then, the player will continue to perform

actions until he chooses to take no more actions, referred to as standing, or until he busts.

Assuming the player does not bust, the dealer will then continue to perform actions until

the dealer is forced to stand or until he busts. Between the dealer and the player, the

highest score wins. If the dealer wins, then the player loses his bet. If the player wins,

then the player receives twice the value of his wager, this includes the original wager.

Rules for the Dealer

The dealer must wait until the player is either bust, in which case the dealer wins by the

default, or until the player stands. Once the player stands, the dealer must draw cards

until the dealer has a score of at least 17 or until the dealer busts.

3.2 Blackjack as an MDP

To simulate an environment for blackjack as a Markov Decision Process, we need to create

a 5 element tuple < S,A, T (s, a, s′), R(s, a, s′), γ > as described earlier. We can already

set γ = 1 no discounting on the rewards, sine we do not intent to motivate an immediate

reward, simply the most optimal outcome in the long run.

3.2.1 State Space

Describing the state space for blackjack is quite difficult, as the number of spaces grows

depending on the number of cards we assume to be in the players hand at any given

time. While it would be feasible to simulate all possible states within blackjack, it would

not be beneficial to any human as any human would be unable to remember the optimal

policy/action within those states in the first place. Instead it is more beneficial to think

of what to do based on the starting hand of a player. As Fig. 3.1 shows, the explored

state space of initial states would then consist of the players hand and the exposed card

of the dealer.

Choosing only the initial states to explore already reduces the score significantly, but

the state space can still be reduced further if we actually consider the score of the players

hand against the face card of the dealer. For example, let us imagine a situation where

the dealer has an exposed King (K), and the player has a hand < 7, 4 >, which is a score

13



Figure 3.1: An initial state of the system; a tuple consisting of the players starting hand
and the dealers exposed card.

of 11, there is no true difference between a hand consisting of < 7, 4 >, a hand consisting

of < 6, 5 >, and a hand consisting of < 8, 3 > since each hand still retains a score of 11.

Applying the same logic to the dealers face card, a King (K), Queen (Q), Jack (J), or 10

return the same score of 10, thus we can reduce the dealers possible face cards to a total

of 10 total card - Ace (A) and 2-10.

3.2.2 Action Space

The action space of the system essentially consists of the actions that a player - now the

agent - can take. The available actions are entirely dependent on the cards the agent

receives and all possible actions are listed below.

Stand

The agent can choose to stand at any point, choosing to stand makes it the dealers turn

to act who will then draw till at least 17 unless he busts. Taking the stand action causes

the system to transition to a terminal state after.

Hit

The agent can choose to hit, this action draws another card for the agent and increases

the agents score. If the agents score exceeds 21 then he has busted and system transitions

to a terminal state, else, the agents turn continues and the agent can choose from the
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available action.

Double Down

This action can only be taken in the initial state. Doubling down doubles the wager and

draws the agent one extra card after which the agents turn ends. Doubling down causes

a transition to a terminal state after.

Split

This action can only be taken in the initial state when the agent is dealt a pair of card,

for example < 5, 5 > or < K,K >. Splitting the cards separates the agents hand into 2

separate hands. Both hands will be played with the equal wager and another card will be

dealt to each hand. For example, if the agent chooses to split < 5, 5 > then the hand will

be split into two < 5, K > and 5, 9 for example. The second card given to each hand is

randomly drawn from the deck.

3.2.3 Transition Probabilities

To define a transition probability it is important to understand that the environment can

only transition to a state where the agents hand has a higher score. The probabilities of

drawing a card between 2-9 are equal to one another, Eqn. 3.1.

P (Drawing a card ∈ [2, 9]) =
8

13
(3.1)

Since, there are 4 cards that result in a value of 10, the probability of drawing a card

with score 10 is 4 times as great, Eqn. 3.2.

P (Drawing a card ∈ {K,Q, J, 10}) = 4

13
(3.2)

Finally, the Ace (A) is the special card which can act as 1 or 11, whichever produces

a higher score less than or equal to 21, therefore it has a 1
13

chance of being drawn, Eqn.

3.3.

P (Draw an A) =
1

13
(3.3)

This allows us to define a transition function T (s, a, s′) between any two states that are

not initial states. Since only initial states have special actions once a transition is made

to a next state it can simply be considered as the initial state the new state corresponds

to. For example, assume an agent is given starting hand < 6, 5 >, score 11, and chooses
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to take the hit action thereby transitioning to state with hand < 6, 5, 4 >, score 15. The

agent can simply consider this state to be the same as any state with initial score 15, for

example < 9, 6 > or < 8, 7 > since the only actions the agent can take at this point are

to stand or hit. Thereby giving us Eqn. 3.4.

T (s, a, s′) =



8
13

score increases by 2-9

4
13

score increases by 10

1
13

score increases by 1 or 11

0 otherwise

(3.4)

3.2.4 Reward Function

The reward function, R(s, a, s′) is actually quite simple, there is a reward of −1 if s′ is

a terminal state in which the agents hand scores higher than 21. There is a reward of 1

if s′ is a terminal state and the agents hand scores lower than or equal to 21 but higher

than the dealers hand. Else, there is a reward of 0, Eqn. 3.5.

R(s, a, s′) =


if s′ is terminal


1 Agent score ≤ 21 and Agent score > dealer score

−1 Agent score > 21

−1 Agent score < 21 and Agent score < dealer score)

0 otherwise

(3.5)

3.3 Overview of the Approach

As discussed in earlier sections, the objective of an Markov Decision Process is to find

the best possible decisions to maximise the reward received within a certain time period

in an environment. Now that we have established the dynamics of Blackjack as an MDP,

we will continue on to perform Value Iteration and Policy extraction on a simulated

environment of blackjack with the State and Action space as discussed. We will perform

policy extraction and value iteration as described in Algorithms 1 and 2. The best policy

for initial states will then be discussed alongside the other results.
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Chapter 4

Implementation

4.1 Monte Carlo Simulations

The State Space for our project, S, is a rather large State Space considering that the

probability distribution for each transition, especially considering the difference between

hard and soft states or pairs who have entirely different options available to them makes it

difficult to define the transitions themselves. Thus, instead we can use Monte Carlo simu-

lations for each state within the state space. We carry out the simulation 1 million times

for each state within the state space and observe how many times the state transitions to

a different state. Using a hash table we can count the number of times these transitions

occurs thereby allowing us to approximate the true distribution extremely accurately.

1 def generatePossibleStates ():

2 initialStateToOutcomeMap = defaultdict(lambda:

3 defaultdict(int))

4 possibleScore = list(range (4 ,21))

5 drawableDeck = list(range (2,12))

6 drawableDeck.extend ([10 ,10 ,10])

7 aceCount = 0

8 for initialScore in possibleScore:

9 for i in range(monteCarloIterations):

10 aceCount = 0

11 drawnCard = random.choice(drawableDeck)

12 currScore = drawnCard + initialScore

13 if drawnCard == 11:

14 aceCount += 1

15 while currScore > 21 and aceCount > 0:

16 currScore = currScore -11 + 1

17 aceCount -= 1

18 if currScore > 21:

17



19 currScore = -1

20 initialStateToOutcomeMap[initialScore ][ currScore]

21 += 1

22 return initialStateToOutcomeMap

Listing 4.1: Sample snippet of a state generating helper function. Creates all the

possible initial states that do not include an Ace in the initial state and uses Monte

Carlo simulations to derive their transition frequencies and therefore their transition

probabilities as well.

As can be seen in Listing. 4.1, we use Monte Carlo Methods, to generate the transition

frequencies for all the possible transition any of those initial states can make by using

Monte Carlo Simulations. Once the frequency has been derived, we can easily approximate

the transition probability by dividing by the number of iterations, in this case 1 million.

4.2 Value Iteration

Value iteration was carried out as described earlier in Algorithm 1. Listing. 4.2 shows the

same algorithm in action with slight modification to accommodate the different handling

methods for each different action as well as the change in State space.

1 for i in range (1000):

2 for currState in agentInitialStates:

3 for faceCard in dealerFaceCards:

4 Vs_i = 0

5 maxAction = None

6 Vcurr_Double = 0

7 Vcurr_Hit = 0

8 Vcurr_Stand = 0

9 for currAction in availableActions:

10 if currAction == "Stand":

11 Vcurr_Stand = 0

12 for currDealerState , currDealerStateCount in

faceCardtoDealerOutcomeMap[faceCard ].items ():

13 currDealerStateProbability =

currDealerStateCount/monteCarloIterations

14 reward = calculateReward(currState ,

currDealerState)

15 Vcurr_Stand += currDealerStateProbability *(

reward)

16 elif currAction == "Hit":

17 Vcurr_Hit = 0
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18 for nextState , nextStateCount in

initialStateToOutcomeMap[currState ]. items():

19 nextStateProbability = nextStateCount/

monteCarloIterations

20 reward = calculateReward(nextState , None)

21 Vcurr_Hit += nextStateProbability *( reward +

V_map [(nextState , faceCard)])

22 elif currAction == "DoubleDown":

23 Vcurr_Double = 0

24 for nextState , nextStateCount in

initialStateToOutcomeMap[currState ]. items():

25 nextStateProbability = nextStateCount/

monteCarloIterations

26 for currDealerState , currDealerStateCount in

faceCardtoDealerOutcomeMap[faceCard ].items ():

27 currDealerStateProbability =

currDealerStateCount/monteCarloIterations

28 reward = 2* calculateReward(nextState ,

currDealerState)

29 Vcurr_Double += nextStateProbability*

currDealerStateProbability *( reward)

30 Vs_i = max(Vcurr_Double ,Vcurr_Hit ,Vcurr_Stand)

31 if Vs_i == Vcurr_Double:

32 maxAction = "DoubleDown"

33 elif Vs_i == Vcurr_Hit:

34 maxAction = "Hit"

35 else:

36 maxAction = "Stand"

37 V_map[(currState , faceCard)] = Vs_i

38 V_maxAction [(currState , faceCard)] = maxAction

Listing 4.2: Sample snippet for the value iteration algorithm used to derive both V∗(s) as

well the optimal policy π∗(s).

Listing 4.2 demonstrates how costly value iteration usually is O(|S|2A) time complex-

ity. This is the reason one needs to think of complex ways to reduce the scope of the

problem itself instead of trying to brute force the entire solution.
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Chapter 5

Evaluation

5.1 Experiments

The parameters for any value iteration algorithm are almost always going to be the

parameters described in Table ??. The state and action spaces, respectively S,A, and

the transition probabilities and the reward function, respectively, T (s, a, s′), R(s, a, s′)

however may or may not change depending on the specific experiment.

Table 5.1: Parameters for value iteration until convergence for the systems within this
project.

PARAMETERS

Episodes S A T (s, a, s′) R(s, a, s′) γ

5.1.1 Hard Initial States

A hard state in blackjack is simply a state where the value of a hand cannot be two

separate values. Quite simply, it means that there are no Aces in the agents initial hand.

The parameters for value iteration over such states are as follows.

Episodes

We continue to iterate until convergence, V∗(s) ∀s ∈ S.
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States

Recalling that the state of an initial hard state in this system is defined by the combination

of the initial hand/score of the agent and the face card of the dealer. Let us call iA to be

the initial score of the agent and iD to be the face card of the dealer. We can then deduce

that iA ∈ [4, 20] - which are all the possible scores for an initial hand not containing an

Ace. We also have iD ∈ {2, 3, 4, 5, 6, 7, 8, 9, 10, J,Q,K,A} = {2, 3, 4, 5, 6, 7, 8, 9, 10, A} -

which are all the possible face cards a dealer can get - the subset {10, J,Q,K} can be

simplified to just {10} since the face cards Jack (J), Queen (Q), and King (K) simply

have a score of 10 and no other special properties. This gives us a total State Space of

||S|| = 17(10) = 170.

Actions

The actions for this experiment are simply A = {Hit, Double Down, Stand}.

Transitions and Rewards

The rewards and transitions are as described in Eqn. 3.5, 3.4.

5.1.2 Soft Initial States

Soft initial states add an additional element to the game. We now need to account for if

we transition to another soft state or if we transition to a hard state. In case we transition

to a soft state then the optimal actions should still be drawn from the optimal policy for

soft states. For example, imagine a starting hand < A, 5 >, which has score 16 or 6, if we

hit and draw a 2 thereby transitioning to < A, 5, 2 >, which has score 18 or 8. We need

to account for the additional options present in this scenario, the way to manage that is

by drawing from the probabilities for a state which is formed with score 18 or 8, thus we

would then draw from the probabilities generated for state < A, 7 >. Essentially for all

soft states s, if s < s′ ≤ 21 then we know that s′ is also a soft state. Otherwise it is a

hard state and we draw from the probabilities used previously in this project.

States

Since we have reduced the state space by forcing one card to be an Ace (A). We now

have iA ∈ [13, 21] and iD ∈ {2, 3, 4, 5, 6, 7, 8, 9, 10, A} as before. This gives us a total State

Space of ||S|| = 9(10) = 90.
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Actions

The actions remain the same; A = {Hit, Double Down, Stand}.

Transitions and Rewards

Additional changes are made to account for transitioning to a hard or soft state. The

rewards however remain the same as in Eqn. 3.5.

5.1.3 Allowing Splitting on Pairs

We expand the actions section by alllowing splitting of the hand. This increases the search

space since that is proportional to both S and A.

States

We now have iA ∈ {4, 6, 8, 10, 12, 14, 16, 18, 20, AA}.

Actions

The action space is increased; A ∈ {Hit, Stand, Split, Double Down}

Transitions and Rewards

Rewards and Detriments are doubled in the case of a Split as each hand takes on an

equivalent wager. The transitions between states are unchanged.

5.2 Results

5.2.1 Hard Initial States

For hard initial states, initial state not containing an Ace, the results of our value iter-

ation can be seen in Table. 5.2. Our results are quite interesting, they mainly show

that the agent was able to stay profitable for a number of a initial states including

iA ∈ {20, 19, 18, 11, 10, 9, 8}, while only considering the actions of Hit, Double Down,

and Stand. The exact actions taken to achieve the results can be seen in Table. 5.3

5.2.2 Soft Initial States

As can be seen in Table. 5.4, 5.5. The soft states are significantly more profitable, with

most states being fairly rewarding. There is also a fairly simple strategy for playing a soft
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Table 5.2: Converged V∗(s) values for all possible initial hard states

AGENT DEALER FACE CARD

SCORE 2 3 4 5 6 7 8 9 10 11

20 0.641 0.650 0.661 0.669 0.704 0.773 0.791 0.759 0.435 0.145
19 0.386 0.404 0.423 0.438 0.496 0.615 0.593 0.288 -0.018 -0.116
18 0.122 0.148 0.176 0.198 0.283 0.399 0.105 -0.182 -0.241 -0.378
17 -0.152 -0.117 -0.079 -0.045 0.011 -0.107 -0.382 -0.423 -0.464 -0.640
16 -0.292 -0.253 -0.210 -0.167 -0.153 -0.476 -0.511 -0.544 -0.575 -0.692
15 -0.292 -0.253 -0.210 -0.167 -0.153 -0.446 -0.493 -0.544 -0.575 -0.668
14 -0.293 -0.253 -0.210 -0.167 -0.153 -0.402 -0.452 -0.511 -0.572 -0.642
13 -0.293 -0.253 -0.210 -0.168 -0.153 -0.356 -0.410 -0.4733 -0.539 -0.614
12 -0.293 -0.253 -0.210 -0.167 -0.153 -0.308 -0.367 -0.434 -0.504 -0.585
11 0.472 0.518 0.568 0.614 0.669 0.463 0.352 0.229 0.061 -0.322
10 0.360 0.408 0.461 0.511 0.576 0.391 0.286 0.143 -0.135 -0.289
9 0.090 0.120 0.183 0.242 0.318 0.154 0.078 -0.074 -0.235 -0.374
8 0.007 0.042 0.079 0.113 0.163 0.075 -0.074 -0.231 -0.330 -0.468
7 -0.080 -0.042 0.001 0.042 0.086 -0.078 -0.226 -0.314 -0.398 -0.548
6 -0.121 -0.082 -0.036 0.007 0.039 -0.188 -0.270 -0.346 -0.431 -0.567
5 -0.115 -0.076 -0.030 0.014 0.045 -0.179 -0.254 -0.338 -0.425 -0.555
4 -0.102 -0.062 -0.017 0.027 0.060 -0.146 -0.226 -0.315 -0.413 -0.539

hand, in that you can just hit when lower than < A, 6 > if the dealer has a 9 or higher.

5.2.3 Allowing Splitting on Pairs

Allowing splitting on the pairs, Table. 5.6, makes the < A,A > delightful, and other

weaker hand such as < 8, 8 >, score 16, which is usually weak as seen earlier become

more profitable. This is likely due to the fact that splitting the pair allows you the chance

to hit an Ace which significantly improves the hand as any pair that draws an Ace can

be considered as a soft hand with the only drawback being that one cannot Double Down

on it, this however is not an issue as Table. 5.5 clearly shows, we do not want to Double

Down on a soft hand anyway.
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Table 5.3: Action from the optimum policy π∗(s) for all possible initial hard states

AGENT DEALER FACE CARD

SCORE 2 3 4 5 6 7 8 9 10 11

20 S S S S S S S S S S
19 S S S S S S S S S S
18 S S S S S S S S S S
17 S S S S S S S S S S
16 S S S S S S S S S H
15 S S S S S H H H H H
14 S S S S S H H H H H
13 S S S S S H H H H H
12 S S S S S H H H H H
11 DD DD DD DD DD DD DD DD DD H
10 DD DD DD DD DD DD DD DD H H
9 H DD DD DD DD H H H H H
8 H H H H H H H H H H
7 H H H H H H H H H H
6 H H H H H H H H H H
5 H H H H H H H H H H
4 H H H H H H H H H H

∗H: Hit, S: Stand, DD: Double Down

Table 5.4: Converged V∗(s) values for all possible initial soft states

AGENT DEALER FACE CARD

HAND 2 3 4 5 6 7 8 9 10 11

< A, 10 > 0.882 0.885 0.888 0.891 0.902 0.926 0.930 0.939 0.889 0.638
< A, 9 > 0.641 0.650 0.661 0.669 0.704 0.773 0.791 0.759 0.435 0.145
< A, 8 > 0.389 0.405 0.423 0.439 0.496 0.616 0.594 0.289 -0.019 -0.116
< A, 7 > 0.122 0.149 0.177 0.198 0.283 0.399 0.106 -0.129 -0.222 -0.361
< A, 6 > -0.003 0.027 0.059 0.090 0.128 0.023 -0.103 -0.180 -0.272 -0.420
< A, 5 > -0.024 0.007 0.041 0.072 0.099 -0.052 -0.111 -0.189 -0.283 -0.414
< A, 4 > -0.003 0.027 0.060 0.092 0.119 -0.013 -0.076 -0.161 -0.260 -0.388
< A, 3 > 0.019 0.049 0.081 0.112 0.140 0.031 -0.035 -0.124 -0.235 -0.360
< A, 2 > 0.043 0.072 0.103 0.133 0.162 0.075 0.007 -0.086 -0.202 -0.332
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Table 5.5: Action from the optimum policy π∗(s) for all possible initial soft states

AGENT DEALER FACE CARD

HAND 2 3 4 5 6 7 8 9 10 11

< A, 10 > S S S S S S S S S S
< A, 9 > S S S S S S S S S S
< A, 8 > S S S S S S S S S S
< A, 7 > S S S S S S S H H H
< A, 6 > H H H H H H H H H H
< A, 5 > H H H H H H H H H H
< A, 4 > H H H H H H H H H H
< A, 3 > H H H H H H H H H H
< A, 2 > H H H H H H H H H H

∗H: Hit, S: Stand, DD: Double Down

Table 5.6: Action from the optimum policy π∗(s) for all possible initial pair states

AGENT DEALER FACE CARD

HAND 2 3 4 5 6 7 8 9 10 11

< A,A > SP SP SP SP SP SP SP SP SP SP
< 10, 10 > S S S S S S S S S S
< 9, 9 > S S S S S S S S S S
< 8, 8 > SP SP SP SP SP SP SP SP SP SP
< 7, 7 > SP SP SP SP SP SP SP SP SP SP
< 6, 6 > SP DD DD DD DD SP SP H H H
< 5, 5 > DD DD DD DD DD DD DD DD H H
< 4, 4 > H H H H H H H S H H
< 3, 3 > SP SP SP SP SP SP SP SP SP SP
< 2, 2 > SP SP SP SP SP SP SP SP SP SP

∗H: Hit, S: Stand, DD: Double Down, SP: Split
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Chapter 6

Conclusions & Future Work

In this dissertation we explored the benefits of Markov Decision Processes in optimizing

how an agent can optimally play blackjack. We provided a deep background on Markov

Decision Processes, followed by a detailed design showing how they can be used to simulate

the a blackjack environment. Our implementation, was rather expensive in a computing

cost, but considering the extremely large game state, it could be argued that we did a

fine job.

Considering the success of our model, the agents behavior was evaluated over a number

of episodes and was shown to be profitable in comparison to what is expected in blackjack

where the house has an edge. In fact, our models were tested in the hardest blackjack

conditions possible, since the larger then number of decks the larger the house edge, up to

a certain extent - asymptotic around 0.55. We used a deck which was technically infinite

thereby making it the hardest environment possible.

6.1 Future Work

For future works there are many options an interested party could take to build on the

works within this game. If one is interested in exploring other Reinforcement Learning

methods then they could look to explore some of those for blackjack, they could instead

focus on a different algorithm such Q-Learning or one of its variants such as Deep Q-

Learning to evaluate how other algorithms compare. If another is more interested in

exploring MDP’s for other stochastic games, then there are opportunities in games such

as Backgammon and poker, although one should be prepared if they choose to undertake

such a task. The extremely large State Space makes poker a very hard game to optimize

for, someone could compare their implementation against solvers available on the web

that are extremely well reputed even by professional player. Finally, if someone wants to
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build directly on the works conducted in this dissertation, then they could compare how

an agent improves with limited decks, this would require someone to describe an exact

transition probability function which could be a rewarding and challenging endeavor.
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