
Effect of network topology on accuracy of optical

quality of transmission prediction algorithm

Rakesh Nair

A Dissertation

Presented to the University of Dublin, Trinity College

in partial fulfilment of the requirements for the degree of

Master of Science in Computer Science (Future Networked

System)

Supervisor: Dr. Marco Ruffini

August 2022

Declaration

I, the undersigned, declare that this work has not previously been submitted as an

exercise for a degree at this, or any other University, and that unless otherwise stated, is

my own work.

Rakesh Nair

August 19, 2022

Permission to Lend and/or Copy

I, the undersigned, agree that Trinity College Library may lend or copy this thesis

upon request.

Rakesh Nair

August 19, 2022

Effect of network topology on accuracy of optical

quality of transmission prediction algorithm

Rakesh Nair, Master of Science in Computer Science

University of Dublin, Trinity College, 2022

Supervisor: Dr. Marco Ruffini

During the past decade, there has been a rapid growth of data traffic in optical trans-
mission. The demand for network bandwidth keeps on growing with the emergence of
internet applications such as streaming, cloud, virtual reality, 5G, internet of things.
The increase in data traffic will affect the response time and quality of services pro-
vided over the network and increase demand in the backbone Dense Wavelength Division
(DWDM) Multiplexing network traffic. The quality of transmission needs to be evalu-
ated before a solution is introduced. Thus, the machine learning method is proposed
to assess the quality of transmission. The performance of the optical transmission is
measured with the help of signal-to-noise ratio, Q-factor, and dispersion. The network
capacity throughout optimization is one of the most critical features in terms of a solu-
tion’s commercial viability. This algorithm will improve the path performance estimation
accuracy by interrogating optical performance monitoring (OPM) devices in the network.
Before being implemented in a real system, the algorithm’s scalability will be verified
using a Mininet-Optical packet-network simulator. We will be able to examine the op-
tical network impairments for varying topologies with the aid of this development. The
Watts-Strogatz technique is utilized to configure different combinations of topologies, and
metrics datasets gathered with OPM were used to train the model. The model used for
this study has demonstrated a 99% accuracy in predicting QoT of established lightpaths
in various topologies built using the emulator.

Acknowledgments

I would like to take this opportunity to express my sincere gratitude to my supervisor

Dr. Marco Ruffini, for his valuable guidance and motivation throughout the course of this

dissertation. I would like to thank my family for their support and encouragement during

my course at Trinity. I would also want to express my gratitude to Bob Lantz and Atri

Mukhopadhyay, staff - TCD CONNECT for their support and advice during the process;

without them, I would have found it difficult to finish my dissertation.

Any omission of acknowledgement does not reflect my lack of regard or appreciation.

Rakesh Nair

University of Dublin, Trinity College

August 2022

iv

Contents

Abstract iii

Acknowledgments iv

Chapter 1 Introduction 1

1.1 Motivation . 1

1.2 Research Objectives . 3

1.3 Outline of the dissertation . 3

Chapter 2 State of the Art 5

2.1 Optical Network Communication . 5

2.2 Watts-Strogratz Model . 9

2.3 Mininet-Optical . 11

2.4 Machine learning Overview . 12

2.4.1 Supervised learning . 12

2.4.2 Unsupervised learning . 13

2.4.3 Reinforcement learning . 13

2.5 Previous Work . 14

2.5.1 Optical Performance Monitor . 14

2.5.2 Network Topology Generation . 16

2.5.3 Quality of Transmission Estimation (QoT-E) using Machine Learning 16

2.6 Summary . 18

Chapter 3 Methodology 19

3.1 Machine learning algorithms . 19

3.1.1 Linear regression . 19

3.1.2 Ridge regression . 20

3.1.3 Random forest regressor . 20

3.1.4 Neural network . 21

v

CONTENTS vi

3.2 Evaluation . 22

3.2.1 Hyperparameter optimisation . 22

3.2.2 Root Mean Squared Error (RMSE) 22

3.2.3 Mean Absolute Error (MAE) . 23

3.2.4 R2 Score . 23

3.3 Shortest path problem . 24

3.3.1 Breadth-first search algorithm . 24

Chapter 4 Implementation 26

4.1 Environment Setup . 26

4.2 Topology generation using Mininet-Optical emulator 28

4.2.1 ROADM ←→ ROADM connection 30

4.2.2 Terminal ←→ ROADM and Switch ←→ Terminal connection . . . 33

4.3 Watts-Strogatz algorithm . 34

4.4 Configuring Dynamic routing algorithm . 35

4.4.1 Implementing BFS algorithm . 35

4.4.2 Generating switch rules information required by the route configu-

rating functions . 36

4.4.3 Configuring optical switching in ROADM devices 38

4.5 Dataset collection using OPM function . 41

4.6 Implementation of ML model for predicting QoT 43

4.6.1 Dataset Pre-processing . 43

4.6.2 Architecture of the Neural Network Model 45

4.7 Summary . 47

Chapter 5 Evaluation 48

5.1 Selection of hyper parameters . 48

5.2 Evaluation and comparison of Machine learning approach 49

5.2.1 Evaluation of regression models . 50

5.2.2 Evaluation of neural network model 52

5.3 Summary . 53

Chapter 6 Conclusions & Future Work 54

6.1 Conclusion . 54

6.2 Future Work . 55

Bibliography 56

List of Tables

4.1 Metrics from OPM used for training the model 43

5.1 selection of hyperparameter . 48

5.2 The observed outcome of the regression model for each topology. 51

5.3 The observed outcome of the neural model for each topology. 52

vii

List of Figures

2.1 Traffics are reconfigured in the ROADM-based networks. 6

2.2 Booster, inline, and pre-amplifier EDFAs used in optical transmission line. 8

2.3 Ring topology with probability - (a). β = 0, (b). β = 0.32, (c). β = 0.50

and (d). β = 1.0 . 10

3.1 Neural network architectures . 21

4.1 Architectural overview of the Mininet-Optical emulator 26

4.2 Linear topology with p = 0, k = 4, and N = 20 34

4.3 Topologies generated by the Mininet-Optical emulator 41

4.4 Plot for hop count of each connection in each topology 44

4.5 Architecture of the neural network layers 47

5.1 Error outcome for each hyperparameter value 49

5.2 Pearson’s correlation coefficient heatmap of the metrics dataset 50

5.3 RMSE error against the test ratio of the dataset 51

5.4 Line Plots of Mean Squared Error Over Training Epochs 52

viii

Chapter 1

Introduction

The possibility of predicting the Quality of Transmission (QoT) metrics using a machine

learning algorithm is investigated in this dissertation. The algorithm was trained us-

ing datasets from various topologies developed using the Watts-Strogatz model and the

Mininet-Optical emulator. It also focuses on selecting the machine learning algorithm

among the four that can forecast the QoT metrics with the most significant degree of

accuracy. The purpose of this dissertation is explained in this chapter. The following

section of the chapter defines the research’s main question and explains how it led to the

set of objectives that were set forth. The dissertation’s contents are outlined chapter by

chapter until concluded.

1.1 Motivation

For the past few decades, the growth of data traffic in the network has increased tremen-

dously which has resulted due to the relentless demand for the high capacity required

for providing and accessing multimedia services, educational services, e-commerce and

healthcare services. As a result, the field of optical communications has undergone a

significant evolution to support increased traffic. Examples include the development of

advanced optical modulation formats that offer high spectral efficiency and intricate net-

work architectures utilizing reconfigurable optical add-drop multiplexers (ROADMs) to

support dynamicity, flexibility, and better utilization of available transmission capacity.

Due to this, the demand for the transport layer’s dynamic reconfigurability has been pre-

sented with new challenges. Due to this, the dynamic addition, deletion, and routing of

wavelength channels might create changes in optical power that could degrade the signal

quality. One of the key elements for enabling dynamic switching in ROADM networks

is the presence of optical performance monitoring (OPM) functions Kilper et al. (2004a)

1

1.1. MOTIVATION 2

which measure the performance of an optical signal at the intermediate network nodes

or inside the receiver itself to estimate the performance of a transmission network. The

information offered by the OPM not only assists in dynamic reconfiguration and network

performance optimization but also provides better use of resources, such as OSNR estima-

tions. Despite this, on-site signal monitoring remains challenging to implement, primarily

because of its high CapEx and OpEx. In order to get beyond the OPM’s restriction, esti-

mating functions are employed to forecast the performance of optical networks. One such

estimator is the Quality of Transmission estimator, which calculates the OSNR signal de-

terioration. The advanced development of SDN controllers and heterogenous components

has increased the uncertainty of the system performance, such as reducing the predictabil-

ity of QoT, which adversely affected the network efficiency and complicated the network

fault diagnosis. Enhancing QoT estimate and monitoring has emerged as an important

goal for increasing effectiveness. The uncertainty produced by active components, such as

erbium-doped fiber amplifiers (EDFA), has made using analytical techniques more chal-

lenging. The application of machine learning techniques has drawn much interest in an

effort to enhance the estimation of Quality of Transmission (QoT).

A large amount of optical link data and setup is required to carry out such studies,

which can be complex and expensive to acquire. To address the scarcity of testbeds

and test platforms, the Mininet-Optical emulator is used, which is an extension of the

Mininet SDN emulator for modelling optical layer transmission and emulating optical

devices that can be controlled via SDN interfaces. Mininet-Optical makes it possible to

simulate the behaviour of optical components by allowing the modelling of components,

including transceivers, ROADMs with wavelength selective switches (WSS), EDFAs for

boost, inline, and pre-amplifications, and OPM devices. OpenvSwitch is used to imple-

ment the data plane capabilities of Line Terminals (transceivers) and ROADMs. Virtual

Ethernet (veth) links are used to simulate optical fibre links between ROADM nodes in

order to simulate multi-channel WDM communications. This study uses Mininet-Optical

to develop a QoT-E system Dı́az-Montiel et al. (2021) that enhances its prediction per-

formance using monitoring data. It offers two contributions: The Watts-Strogatz model

is used to construct the various topologies needed for this work. In addition, it provides

a QoT-E technique based on active lightpath monitoring in an optical SDN environment

that reduces estimation errors brought on by wavelength-dependent power dynamics. For

this, machine learning regression models will be used to build an estimation model, and

their accuracy will be calculated and compared with the help of evaluation metrics in

the machine learning algorithms. This algorithm will improve the path performance esti-

mation accuracy by interrogating optical performance monitoring (OPM) devices in the

1.2. RESEARCH OBJECTIVES 3

network. The algorithm’s scalability will be validated using the Mininet-Optical packet-

network emulator before implementing in the existing system. This development will help

us assess the optical network impairments for various topologies.

1.2 Research Objectives

To achieve the objectives of the dissertation, the following research areas are examined:

1. Generate multiple sets of optical network topologies using Watts-Strogatz model

and Mininet-Optical emulator.

2. Implement a prediction algorithm for estimating the Quality of Transmission (QoT)

using datasets generated from the topologies of different configurations with the help

of Mininet-Optical for predicting the path performance accuracy

3. Evaluate the machine learning algorithm on multiple optical topologies and their

lightpaths.

(a) Their outright performance

(b) Comparison between different machine learning algorithm to identify the model

which provide better accuracy and low error.

1.3 Outline of the dissertation

The rest of the dissertation is organized as follows:

1. Chapter 2 presents a brief background about the technologies used in this disser-

tation, gave an overview of Watts-Strogatz model and Mininet-Optical emulator.

It also presents the State-of-the-art of QoT-E analysis performed in the optical

transmission network.

2. Chapter 3 discusses the methodology used in this dissertation. It covers machine

learning techniques for evaluating the QoT and evaluation metrics used for under-

standing the accuracy of the machine learning models. It mentions the shortest

path problem and the algorithm used to resolve this issue.

3. Chapter 4 outlines the design and implementation of the components necessary

for the research. This chapter sets up the required technical background for the

experiment to follow. Deep dive into the implementation of the topologies generated

1.3. OUTLINE OF THE DISSERTATION 4

with the help of Watts-Strogatz model and the Mininet-Optical emulator and the

machine learning models, and its parameters used for optimising the model.

4. Chapter 5 the observations made during this investigation are thoroughly anal-

ysed, discussed, and evaluated, along with the effectiveness of the machine learning

method used. Graphs showing the results are included with the discussion.

5. Chapter 6 concludes the dissertation, discussing about the challenges encountered

and contributions made in this research. It concludes with a discussion of potential

directions for future investigation.

Chapter 2

State of the Art

This chapter discusses the conceptional background information required to understand

the proposed work better. It will also present the current state-of-the-art in the re-

search area and tools used for building the project. The first section gives an overview

of optical communication and its components, and the second section will describe the

Watts-Strogatz model and its impact on the project. The third section will focus on

selecting the emulator used for the study and the previous and ongoing research that is

relevant to this study. Lastly, the machine learning algorithm and techniques used for

evaluating the predictions are explored.

2.1 Optical Network Communication

The tremendous growth in the demand for services such as video streaming and calls,

video conferencing, streaming sports, or movie contents, accessing real-time services, 5G

services, and voice over internet protocol (VoIP) and the number of users and bandwidth

used by each user has increased a toll on network bandwidth in order to facilitate the

required demands for bandwidth, and it is essential to understand and leverage the optical

fibre limit. Due to the rising demands, the capacity of optical communication systems is

constantly increasing, and optical network architectures are becoming increasingly com-

plex, transparent, and dynamic. Because of their dynamic nature, these high-capacity

fiber-optic networks are vulnerable to a variety of transmission impairments. Because

each fibre carries a massive amount of data traffic, even a brief interruption in service

can have disastrous consequences. An optical network provides enormous bandwidth and

infrastructure to deliver varieties of services mentioned above when and where required.

Economically transmitting enormous data at higher rates over a single fibre has led to im-

plementing multiplexing techniques. There are two ways to do it, increase the bit rate by

5

2.1. OPTICAL NETWORK COMMUNICATION 6

Figure 2.1: Traffics are reconfigured in the ROADM-based networks.

mean of time division multiplexing (TDM), where several optical signals are combined and

transmitted together as a high bit-rate data stream, and it is separated (demultiplexed)

again based on the arrival time into several lower bit-rate optical signals. However, engi-

neering the impairments is difficult with increased bit rates. Another way to increase the

link capacities is by using wavelength division multiplexing (WDM) by using multiple car-

rier wavelengths or channels to transmit data simultaneously. This technique helps make

a single fibre look like multiple virtual fibres in which each virtual link will carry a single

data stream. In optical communication, WDM transmission is widely used, which helps

in providing more functions than just point-to-point transmission. The network provides

lightpaths to each user which is an optical communication carried over a wavelength on

each link. Different lightpaths in the network can use the same wavelength as long as they

do not share any common path, which helps in reusing the same wavelength spatially in

the different parts of the network. The optical line terminal (OLT) and reconfigurable

optical add-drop multiplexer (ROADM) are the critical network components in enabling

optical networking Tomlinson (2008). An OLT multiplexes multiple wavelengths into a

single fibre and demultiplexes the same set of wavelengths on a single fibre into a separate

one. It is generally deployed at the end of the point-to-point WDM links.

The ROADM Abedifar et al. (2013) is an optical add-drop multiplexer that allows the

ability to add mechanism to route traffic by adding or dropping the wavelengths which

are passing through the site, its working logic is similar to the generic routers that are

used in the ethernet networks where it allows user to define the routing rules/tables, and

the packets is dropped if it is meant to be in that path. The initial version of the opti-

cal add-drop multiplexer (OADM) did not have the ability to modify or reconfigure the

switching rules after deployment. This drawback was later resolved when the ROADM

2.1. OPTICAL NETWORK COMMUNICATION 7

was introduced in the early 2000s; it enabled the option to reconfigure the lightpaths

and supports more than multiple directions at a site. By solving this issue, switch rules

and bandwidth assignment need not to be carried out during the phase of deployment

of a system and can be reconfigured when required without affecting the traffic passing

through the ROADM 2.1. These activities are enabled with the help of two components in

the ROADM device; Wavelength Selection Switch (WSS) performs the actual wavelength

switching and enables the user to route any wavelength to and from any port dynami-

cally and Optical Channel Monitoring (OCM) for monitoring the optical power of each

wavelength to ensure they are operating efficiently.

In optical communication, the power and signal levels are measured using the decibel

units (dB), a relative measurement, and absolute power levels are measured in ”dBm”.

The signal’s power will always be higher at the central office of the network connection

than at the customer end. The loss must be calculated between two points to understand

the signal attenuation. It is measured by calculating the difference between the power

coupled into the cable at the transmitter and the power that comes out at the receiver

end. The optical fibres are combined, connected or traversed through the passive optical

network components. The signal travelling in an optical fibre loses power over distance.

The loss also depends on the wavelength of the light; the shorter the wavelength is at-

tenuated the most. The transmission quality is affected when noise is introduced to the

network, an undesirable disturbance that masks the receiving signals in an optical sys-

tem. Three main types of noises are present in the optical fiber communication system:

Thermal noise, shot noise and Amplified spontaneous emission (ASE) noise. The ther-

mal noise, also known as Johnson-Nyquist noise, is generated by the random motion of

electrons always present at a finite temperature within an electrical conductor. Every

component with some temperature will exhibit noise superimposed on the output. The

thermal noise increases with the increase in the temperature. The noise is proportional to

the square root of the product’s temperature, resistance, and frequency bandwidth. This

noise level is dependent upon the temperature and the value of resistance. The shot noise,

also known as quantum noise, is raised due to the discrete nature of the electric charges.

It describes the fluctuations of the number of photons detected due to their occurrence

independent of each other. Unlike thermal noise, the shot noise is dependent upon the

current flowing and has no dependency or relationship with the temperature at which the

system operates. Shot noise is more apparent in devices such as a transmitter.

An erbium-doped fiber amplifier (EDFA) is a device that amplifies an optical fiber

signal. It works on the principle of simulating the emission of photons. When a signal is

transmitted over a long distance, there are high chances of signal loss due to fiber attenu-

2.1. OPTICAL NETWORK COMMUNICATION 8

Figure 2.2: Booster, inline, and pre-amplifier EDFAs used in optical transmission line.

ation, connectivity losses, etc. these losses are compensated by amplifying many times in

between. Earlier optical signal was converted first into an electrical signal, amplified and

then converted back to an optical signal again. With EDFA, optical signals get amplified

without the need to convert the signal into an electrical signal before amplifying. There

are several types of fiber optic amplifiers: Semiconductor Optical Amplifier (SOA), fibre

Raman and Brillouin amplifier, and EDFA. Among these, EDFA is most widely deployed

in the WDM system. It can amplify multiple optical signals simultaneously combined

with the WDM technology. The EDFA consists of an Erbium-doped fiber (EDF), pump

laser and WDM combiner, which is used for combining the signal and pump wavelength

for propagating simultaneously through the EDF. The EDFA are used as a booster, inline

and pre-amplifier in an optical transmission line 2.2. The booster amplifier is placed after

the transmitter to increase the optical launch power to the transmission line. It is not

required in the single channel links but essential in the WDM link where the multiplexer

attenuates the signal channels. It has high input and output power and medium output

gain.

The inline amplifiers are placed in the transmission line to compensate the attenuation

induced by the optical fiber. The in-line EDFA is designed for optical amplification

between two network nodes on the main optical link. It features high output power, low

to medium input power, low noise figure and high output gain. The pre-amplifier is placed

before the receiver of a WDM link to have a sufficient optical power is launched to the

receiver. It is used for compensating the losses in a demultiplexer near the receiver. It has

relatively low input power, medium output power and medium gain power. The EDFA

are widely adopted because of its high pump power utilization, support for simultaneously

amplifying wide range of wavelength and relatively easy deployment and more affordable

2.2. WATTS-STROGRATZ MODEL 9

compared to other signal amplification methods.

Unfortunately, the EDFA not only amplifies the input optical signal, but they also in-

creases/amplifies the noise level and degrades the signal-to-noise ratio. When spontaneous

emission happens in a gain medium such as EDFA, it gets amplified by simulated process.

Amplified spontaneous emission (ASE) is produced when a gain medium is pumped to

produce a population inversion. Consequently, spontaneous emission occurs initially, fol-

lowed by its amplification by the stimulated emission process in the gain medium. For this

study, we will mainly focus on the Amplified spontaneous emission (ASE) to understand

and evaluate the quality of transmission (QoT) in the transmission line.

The optical signal-to-noise ratio (OSNR) is used to quantify the degree of optical noise

interference on optical signals. It refers to the signal degradation brought on by the ASE

noise that optical components like amplifiers bring to the transmission line. When the

signal is amplified by the EDFA, its OSNR are reduced and impacts the receiver the most

because the low OSNR value means that the receiver will not be able to recover the signal.

The higher the OSNR value, better it is for the overall system. The performance of an

optical transmission system is evaluated using the OSNR as a benchmark. To ensure

error-free operation, the WDM network needs to be operated over its OSNR limit.

The standard calculation for OSNR is as follows:

ONSR = 10dB ∗ log10
(
S

N

)
(2.1)

Where S and N, both stated in watts/milliwatts, stand for the signal and noise powers,

respectively.

2.2 Watts-Strogratz Model

A small world network is a network feature characterized by a large clustering coefficient

and a small average shortest path length i.e., most nodes which are not neighbours of

one another can be reached from every other by a small number of hops. Small world is

usually identified by existence of short path length between two randomly picked nodes,

cliques or near cliques with high clustering co-efficient i.e., sub-networks with connections

between essentially any two nodes within them, are common in small-world networks, and

degree of node in the network has a power distribution. it is unlikely that the deletion

of a peripheral node will obstruct communication with other peripheral nodes. Some

examples for small world network are – electric power grid, the network of brain neurons,

airport network and telephone call graphs. To understand the distance geodesic distance

2.2. WATTS-STROGRATZ MODEL 10

is calculated between two pairs of nodes which is a minimum number of edges that need to

be traversed from the starting node to the destination node. The diameter of a network is

the maximum of the geodesic distances between node pairs, and the world encompassed by

a graph is ”small” if the predicted number of hops between two randomly chosen persons

is small. There are three most commonly heard network models used for generating

small-world network - Erdos-Renyi Model, Watts-Strogatz Model and Barabasi-Albert

Model. For this study, Watts-Strogatz model are used for generating the optical network

topologies.

The Watts-Strogatz model Watts and Strogatz (1998) is a random graph generation

mechanism that generates networks with small-world traits such as low average path

lengths and strong clustering. It is widely used in the simulation of the small-world

system. The model contains parameters set having three variables representing the group

size, number of neighbours and rewiring probabilities.

The rewriting process or generation of a Watts-Strogatz model are as follow –

1. Build a regular ring lattice with N node with mean degree of K, with each node is

connected to its K/2 nearest neighbours on either side.

2. With probability β each edge (x, y) is rewired in the network to a random node

selected using a randomizer and new connection (x, y’) are established instead, where

y’ is picked at random from among all possible nodes while avoiding self-loops (y,x’)

and link duplication.

Below is an example for a ring lattice topology generated by Watts-Strogatz model

with Node N = 20, mean degree K = 4, and different sets of probabilities.

Figure 2.3: Ring topology with probability - (a). β = 0, (b). β = 0.32, (c). β = 0.50 and
(d). β = 1.0

2.3. MININET-OPTICAL 11

Figure 2.3 (a). A ring topology is created with probability β = 0 in which each

node is connected to the same number of nearest neighbours on either side. A Watts-

Strogatz model is created by removing each edge based on the probability value and

rewired it to yield an edge between the new pair of nodes chosen uniformly at random.

when the probability β = 1.0, all the edges are rewired, and the ring lattice network is

transformed into random graph. The major limitation of this model is the unrealistic

degree distribution which does not follow power-law. The Watts-Strogatz model also

assumes a certain number of nodes, making it impossible to simulate network expansion.

2.3 Mininet-Optical

The continuous advance of the evolution of technologies and features in the optical net-

work world has challenged vendors, researchers, and network planning community for

foreseeing, investigating, and testing the new technologies to understand/evaluate de-

serving resources and investments to be made for the network planning, optimization

of the optical layers and its deployments. Research solutions are undergoing significant

changes in both technologies and methodology to provide cost reduction, more advanced

security, reliability, scalability, and sustainability. It is not possible to test the features

with large number of hosts, switches/devices and SDN controller on physical devices and

servers. For this, simulation of several sets of configuration scenarios, network recovery

tests, traffic load analysis and analysis of newly developed algorithm is required without

relying on a specific vendor.

Mininet-Optical Mininet-Optical Project (2022) is an opensource network emulator

for both simulating the mechanics of optical transmission and creating an optical trans-

mission and switching plane that is controlled by the SDN. It helps in providing a virtual

test bed for modelling optical transmission physics by creating hosts, links and switches

and its behaviour by using the OpenFlow protocol with the help of processes, network

namespaces and various features provided by linux kernel such as Open vSwitch and vir-

tual ethernet (veth). It emulates the data plane of both packet and optical networks

and simulates their physical behaviour and impairments of the optical network. Mininet-

Optical supports discrete optical components such as amplifier (EDFA) for boost, inline

and pre-amplification, ROADMs, transceivers, and optical fiber links. It allows you to

connect an emulated packet-optical network to a widely used open source SDN controller

(ONOS). This tool allows the user to customize the implementation and configuration of

each network elements. To evaluate the impact of these configurations on the physical

performance of the system, it makes use of gnpy library for calculating the propagation

2.4. MACHINE LEARNING OVERVIEW 12

performances by evaluating OSNR/g-OSNR of each channel. Mininet-Optical provides an

external control API using which user can write their custom configurations or algorithms

using python for interacting with SDN interface.

2.4 Machine learning Overview

Machine learning (ML) technique, as the name suggests, is a subclass of artificial in-

telligence that allows the system to automatically learn and improve from experiences

from accessing data without explicit programming. Machine learning algorithm relies on

input, such as training data to understand the entities or features and the connection be-

tween them. It builds a statistical model based on such input data for analysing complex

structures and provide predictions. Models can be trained to identify the patterns and

relationships between input data and automate the routine processes such as speech and

image recognition, email filtering, computer vision, fraud detection and recommendation

system. The learning system of a machine learning algorithm can be divided into three

main parts –

1. Decision Process: In order to estimate a pattern in the data, the machine learning

algorithm is utilized to make predictions or classifications based on the input data.

2. Error Function: The error function evaluates the prediction of the model by

comparing the distance between the predicted values and the true values. It can

make a comparison for assessing the accuracy of the model.

3. Optimization Process: The weights are autonomously adjusted until an accuracy

threshold has been met to better fit the data points in the training dataset. The

algorithm will repeat this evaluate and optimize process for reducing the variation

between the true value and the model estimation.

The machine learning algorithm falls under three primary categories:

2.4.1 Supervised learning

Supervised machine learning algorithms are trained with labelled (desired output) datasets

to learn and increase accuracy over time for classifying data or predicting outcomes more

accurately. The model modifies its weights as input data is fed into it until the model is

well fitted. The cross-validation process is used to ensure that the model avoids overfitting

or underfitting. To train the underlying algorithm, a tagged training dataset is initially

2.4. MACHINE LEARNING OVERVIEW 13

used. The unlabelled test dataset is then fed this trained algorithm to make output value

predictions.

The supervised learning is classified into two categories of algorithm:

1. Classification: It uses an algorithm to accurately categories test data into specific

groups, such as identifying spam mails, classifying colour – red or blue, and housing

prices. Models will label the data they analyse, which is learnt by the algorithm

through training on labelled training data. The data input and output have been

labelled so that the model can comprehend which characteristics will categorize an

object or data point with distinct class labels. Common classification models are

support vector machines (SVM), decision trees, and k-nearest neighbour.

2. Regression: Regression model are used to understand the relationship between

the dependent and independent variables, most commonly used for predicting and

projections/ forecasting. It is generally used to predict continuous outcomes. Some

popular algorithms are linear regression, lasso regression, Ridge regression and Ran-

dom forest.

2.4.2 Unsupervised learning

Unsupervised machine learning algorithm are used to analyse and cluster unlabelled

datasets to discover hidden patterns or grouping the data without the need of human

interventions. The count of the clusters is usually defined by setting it in the hyper-

parameters. It works best when we do not have data on the intended results, such as

when trying to figure out who the market is for a brand-new product that the company

has never sold. Some use cases for unsupervised learning are looking through the online

sale data and identify different types of clients making purchases, detecting anomalies

and outliers, and clustering customer data based on similarities. Commonly used unsu-

pervised algorithms are K-means algorithm, KNN (K nearest neighbours), and principal

component analysis (PCA).

2.4.3 Reinforcement learning

Reinforcement machine learning algorithms are a learning method that interacts with its

environment by training machines through trial and error to select the best actions with

the help of a reward system. With the aid of this system, it is possible to automatically

decide which actions to take in a given situation in order to maximize performance. Al-

though both supervised learning and reinforcement learning use mapping between input

2.5. PREVIOUS WORK 14

and output, reinforcement learning uses rewards and punishments as signals for positive

and negative behaviour. This is in contrast to supervised learning, where the feedback

provided to the agent is the correct set of actions to perform a task. The main ele-

ments of reinforcement learning systems are – The agents, environment, policy that the

agents follow to take actions and reward system. Some examples are, robotics for indus-

trial automations, strategy planning, and autopilot control for cars and aircraft. Some

commonly used algorithms are Q-learning, policy iteration, value iteration and Markov

decision process (MDP).

2.5 Previous Work

The previous section introduced the background for optical transmission and the overview

about the machine learning algorithm and network generation model required for this

study. This section will explain the previous work and studies carried out in this field.

2.5.1 Optical Performance Monitor

Zhenhua in his paper Zhenhua et al. (2016) discussed and analysed the significance of

Optical performance monitoring (OPM) which does the estimation of different physical

parameters of transmitted signals and various components of an optical network. The

author examined potential difficulties that could arise in the scalable optical network and

evaluated recent work in the field of optical monitoring. The author further discussed the

OPM techniques for different systems such as direct detection systems, digital coherent

systems, OPM functionalities in elastic network operations and OPM devices in optical

networks.

Digital OPM methods, e.g., Asynchronous sampling-based techniques, asynchronous

amplitude histograms (AAHs) Shake et al. (2001); Li et al. (2005); Kozicki et al. (2008),

asynchronous delay-tap plots (ADTPs) Khan et al. (2010); Dods and Anderson (2006);

Wu et al. (2010), asynchronous two-tap plots (ATTPs) Jong (2008); Khan et al. (2011),

and asynchronous single channel sampling (ASCS) Yu et al. (2014), are considered attrac-

tive since they do not require clock information and they are also capable of monitoring

multiple impairments simultaneously, thus being cost-effective. The spectral resolution,

in this case, is determined by the linewidth of the LO laser and is several orders of mag-

nitude higher than that of a tunable optical filter. Since the optical filter or the LO laser

needs to be tuned for scanning the whole WDM spectrum, such techniques can introduce

measurement latency. The clock tones-based monitoring techniques can measure CD and

2.5. PREVIOUS WORK 15

PMD and are dependent on data rate and modulation format Wang et al. (2007). Besides

monitoring the specific tones (i.e., clock and pilot tones) in the RF spectrum, changes in

the spectral distribution of the overall RF spectrum due to various network impairments

may also be analyzed for monitoring these impairments Zhao et al. (2009). Advances in

coherent detection and DSP over the past decade together defined the current generation

of optical transmission systems and opened up the phase and polarization of an optical

carrier for information encoding. High order modulation formats such as PM-QPSK and

PM-16QAM enable data transmission rates per channel to move beyond 100 Gb/s. This

is more commonly known as channel estimation in wireless communications literature,

but it shares the same objectives as OPM in a general sense. Impairment-aware routing

has long been a goal for OPM, but it was not until the introduction of digital coherent

transmissions that modulation formats, bandwidth and bit rate can be made adaptive ac-

cording to real-time link impairments and traffic demands. The key enabling technologies

supporting EON include de Miguel et al. (2013). Adaptive Elements These include flexible

bandwidth transmitters and receivers (called bandwidth variable transceivers (BVTs)),

bandwidth variable wavelength cross-connects (BV-WXCs), etc., which give the network

the capacity to modify its configuration adaptively. Monitoring Mechanisms The moni-

toring elements allow the EONs to be fully aware of the current network conditions, which

is a prerequisite to be adaptive. Rather, the useful network information can directly be

retrieved inside the DSP-based coherent receiver itself. Since optical orthogonal frequency

division multiplexing (OFDM) may play a role in future EON, there is considerable inter-

est in developing OPM techniques for OFDM signals. Recently, a few experimental works

have demonstrated OPM’s functionalities in EONs Geisler et al. (2011); Jin et al. (2011).

Geisler et al. (2011) employed OPM and a real-time adaptive control plane to optimize the

network parameters depending on the PLIs. In their work, signal quality was monitored

at various network nodes, equipped with the necessary monitoring mechanisms, and the

resulting information was then communicated to the network control plane. OPM can

also help in the realization of PLI-aware routing in EONs in order to improve the overall

network efficiency. OPM devices typically employ a tuneable band-pass filter, or a diffrac-

tion grating combined with a single detector to monitor the mentioned parameters Kilper

et al. (2004b). Recently a commercially available high-resolution OCM has been reported

in Rosenfeldt et al. (2015). An ADTS-based technique is used to monitor the parame-

ters mentioned above in a field trial simultaneously. For example, it is revealed that the

root cause of the higher than expected pre-FEC BER and reduced system margin of the

monitored link is the high amount of residual CD resulting from the use of an incorrect

dispersion compensation module. Zhenhua et al. (2016) concludes that OPM remains an

2.5. PREVIOUS WORK 16

essential component of optical network operation. Datacentres and cloud computing have

increased the demand for OPM to manage network faults and EONs. OPM and related

optical network functionalities are expected to play a growing role in the development of

next-generation optical networks.

2.5.2 Network Topology Generation

While topology should have no bearing on the accuracy of network protocols, Hongsuda

et al. (2002) stated in his article that topology occasionally significantly impacts network

protocols’ performance. For this reason, network researchers frequently create accurate

topologies for their simulations using network topology generators. Waxman (1988) cre-

ated the first network topology generator frequently used in protocol simulations. The

link formation probabilities in this generator, an adaptation of the conventional Erdos-

Renyi random graph Bollobás (1985), are skewed by the Euclidean distance between the

connection ends. He considered three classes of network generators in this paper. The

first category, random graph generators, is represented by the Waxman generator Wax-

man (1988). The second category, the structural generators, contains the Transit-Stub

Calvert et al. (1997) and Tiers generators Doar (1996). Finally, degree-based generators

such as power-law random graph (PLRG) Aiello et al. (2000) are discussed, which create

several top-level networks, each attached to several intermediate-tier networks. Links are

then assigned randomly, picking two node copies and assigning a link between them until

no more copies remain. The author began by challenging the generally held notion that

degree-based generators are preferable to structural generators simply because they fit

the degree distribution of the Internet. They lack some nodes and links, making them

insufficient. The graphs do not reflect link speeds or policy routing; they depict con-

nectivity (although we have attempted to approximate policy routing). The attention in

this study has been limited to relatively big graphs since they were trying to determine

which family of generators best represents the large-scale structure of the Internet (the

smallest generated graph had 1000 nodes). The structural generators in use today or

those that have yet to be created might be preferable options for small-scale simulation

investigations.

2.5.3 Quality of Transmission Estimation (QoT-E) using Ma-

chine Learning

Diaz-Montiel et al. (2019) studied the potential of deploying QoT estimation tools with a

multi-class Support Vector Machine classifier to assist the routing and wavelength assign-

2.5. PREVIOUS WORK 17

ment module of future optical control systems, in order to improve the management of

network resources. They further discussed about the research on prediction model carried

out in the field of optical control system.

Barletta et al. (2017) took into account the use case of assessing whether unestab-

lished lightpaths meet a necessary BER threshold. The conclusions were expanded in

Rottondi et al. (2018), which also provided a more in-depth investigation of the obstacles

that network components in optical networks present to the creation of cognitive control

systems. In order to simulate the situation of an online control system, Bouda et al.

(2017) collected and trained synthetic data on-the-fly. Many physical layer settings were

used (i.e., launch powers, fiber span losses of specific links). Using an emulated 88-channel

system, QoT prediction with 0.6 dB Q-factor accuracy was accomplished. In impairment-

aware wavelength-routed optical networks (WRONs), Mata et al. (2017) have explored

the possibility of SVM in classifying lightpaths into good or low-quality categories. 11000

samples from a dataset were utilized for training the learning model. While maintaining

a classification accuracy of 99.9%, the new models with RF and bagging trees beat their

old SVM model in terms of computing efficiency. Meng et al. (2017) Markov Chain Monte

Carlo-based learning model helped them achieve a Q-factor estimation inaccuracy of 0.5

dB. Deep neural networks (DNNs) were investigated by Mo et al. (2018) to forecast the

power dynamics of a 90-channel ROADM system. They conducted studies in a small

testbed and conducted online training with 6720 training samples to examine the effects

of power excursions during the EDFA amplification process of EDFAs.

The author used an Optical-MAN emulator for generating network topologies com-

posed of EDFA links, ROADM equipped with WSS and AGC-EDFA for post/pre-signal

amplification. Each transmission was enabled with 90 channels, and for their study,

they created a linear topology with multiple end-to-end transmission connections. From

Ghobadi et al. (2016), four QoT classes are considered: OSNR ≥ 17 dB ≥ 14 dB ≥ 10 dB,

corresponding to 16 Quadrature Amplitude Modulation (QAM), 8QAM, and Quadrature

Phase Shift Keying (QPSK) modulation formats, respectively. They set the minimum

OSNR threshold at 10 dB; below this level, the lightpath is not feasible, putting it in

the ”none” category. They used 15 wavelength load (WL) scenarios to train the SVM

model: N=I, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, and 70. The data set contains

37,968 samples, with an 80-20% split between training and test data. They then used

a 5-fold cross-validation strategy for the splitting strategy. For the four QoT classes,

the multi-class SVM classifier is evaluated. This tool’s overall accuracy for the multi-class

classification use case was 96.2%. The confusion matrix divides the percentage of correctly

classified OSNR levels into four classes: 16QAM, 8QAM, QPSK, and below the OSNR

2.6. SUMMARY 18

threshold (none). Despite the exceptional classification accuracy, a significant drawback

of this implementation of the multi-class SVM classifier is the computational time re-

quired to train the model, given its complexity O(n3). They concluded that they would

look into alternative learning models, such as neural networks, to support the multi-class

classification scenario and achieve faster training rates. They also intend to incorporate

nonlinear noise effects into the Optical-MAN emulator to use their learning models on

top of physical testbeds. Their ultimate goal was to integrate the QoT estimation tool

into a real SDN optical control plane.

2.6 Summary

In this section, a background overview and discussed fundamental features of optical com-

munication and its components, Watts-Strogatz model used for building the topologies,

Mininet-Optical and the machine learning algorithms are given. We also discussed the

key elements that enabled the optical link transmission.

Finally, this section was concluded, by discussing the research carried out in the field

of Optical performance monitoring (OPM), network topology generation and existing

suggestions in literature for implementing prediction system for analysing the quality of

transmission estimation (QoT-E) over the optical link transmissions.

Chapter 3

Methodology

The chapter discuss the methodology used for building this dissertation work. The sec-

tion 3.1 explains all the machine learning algorithms used in this research for predicting

the Quality of transmission (QoT) for predicting and evaluating optical transmission

performance. Section 3.2 mentions all the evaluation metrics used for evaluating the per-

formance of the algorithm. Section 3.3 concludes the chapter with the formal introduction

to the shortest path problem and algorithm used for solving this issue.

3.1 Machine learning algorithms

Machine learning algorithms are used for creating a prediction model. For this work, four

supervised algorithms are used which best suits this study. These algorithms are Linear

regression, Lasso/Ridge regression, Random forest, and neural network.

3.1.1 Linear regression

Linear regression is a supervised machine learning algorithm used for finding the linear

relationship between an independent variable X and a dependent variable y for predicting

the outcome of future events. For example, a model might want to find the relate the

weights of an individual to their heights using linear regression model. The variable we

want to predict is called the dependent variable or outcome variable; the variables used

to predict the other variable’s value is called the independent variable. The mathematical

equation for the linear regression is as follow:

Y = m ∗X + b (3.1)

19

3.1. MACHINE LEARNING ALGORITHMS 20

3.1 Where X is a dependent variable (target), Y is an independent variable, m for

estimated slope and b is the estimated intercept.

This regression algorithm’s main objective is to determine two things:

1. does a set of independent variables does a great job in predicting an outcome/de-

pendent variable

2. which independent variables are significant predictors of the dependent variable.

3.1.2 Ridge regression

Ridge regression is a technique for analysing multiple regression data that suffers from

multicollinearity by performing L2 regularization. When multicollinearity occurs, least

squares estimates are unbiased, and variances are significant, due to which the predicted

value will be far away from the true values. Ridge regression lowers the standard errors

by biasing the regression estimates to some extent. In ridge regression, the first step is

to standardize the variables by subtracting their means and dividing by their standard

deviations. Overfitting problem may lead to inaccurate and unstable model, to minimize

the overfitting problem in the model a technique called regularization is used. It adds

squared magnitude of coefficient as penalty to the loss function. A tunning parameter (λ)

to control the strength of the penalty, when λ = 0, model will be least squares regression,

while λ = ∞, all coefficients are shrunk to zero.

3.1.3 Random forest regressor

Random forest regressor is a supervised machine learning algorithm which is an ensemble

of decision trees. Ensemble learning is the process of using multiple models which is

trained over the same data to improves its accuracy and reduce overfitting, and the average

result of each model is calculated to find more powerful predictive model. It randomly

performs row sampling and feature sampling from the dataset to form sample datasets for

every model. It uses mean squared error (MSE) to measure the quality of a split. It uses

bagging method and random feature selection to resolves the problem of overfitting. It

scales well when new features are added to the dataset. It provides better accuracy “out-

of-the-box” without tuning hyperparameter when compared to other linear algorithms. It

has three main hyperparameters which need to be set before training that are – node size,

number of trees and the number of features sampled. But it does have few disadvantages

– Finding trends that would allow it to extrapolate values outside of the training set is not

possible, it takes much higher time when handling large datasets as they are computing

3.1. MACHINE LEARNING ALGORITHMS 21

data for each individual decision tree, it requires significant amount of memory for storing

and retaining information from several numbers of individual trees. Some common use-

cases for random forest model are – recommendation system in e-commerce domain for

cross-sell purposes, fraud detection and credit scoring in the banking sector, it is also used

in the medical domain to estimates the drug responses to specific medications and price

prediction for housing or any specific new products.

3.1.4 Neural network

Neural network learning algorithm is a computational learning system that uses a network

of function to understand and translate a data input of one form into a desired output. It

works in a similar way how neurons of the human brain function together to understand

the inputs from human senses. It is comprised of node layers, consisting of an input layer,

one or more hidden layers and output layer, which delivers the final output. Most neural

network are fully connected to each other 3.1 i.e., each hidden unit and each output unit

is connected to every unit in the layer either side.

Figure 3.1: Neural network architectures

Each node connecting to one another has a weight and threshold associated with it. If

the output of any individual node is above the threshold; data is sent to the next layer; no

data is passed along within the network. This helps us learn which essential features are in

the data to produce the output. Each node has its own linear regression model, consisting

of data, threshold, weight, and output. Neural networks have several use cases across

many industries such as – targeted marketing by social network filtering and behavioural

data analysis, financial prediction based on processed historical data, chemical compound

identification, visual recognition, automated chatbots, and recommendation engines.

3.2. EVALUATION 22

3.2 Evaluation

Once the machine learning algorithm are trained properly with the training set, the

performance of the model needs to be evaluated to understand the accuracy and the

error for assessment. Various evaluation techniques and metrics are used for quantifying

the performance of the machine learning model. In this section different techniques and

metrics are discussed which will be used later for the evaluation processes.

3.2.1 Hyperparameter optimisation

Hyperparameters are parameters of the model that cannot be learned directly from the

data. Hyperparameters define the degree of freedom the model has for exploring to find

the proper fitting for the data. The hyper-parameters of each model must be optimized

after the best training set size for each model has been determined. Each of the model’s

hyperparameters is selected at a distinct value during this phase and trained over. The

validation set is then used to assess their performance. The linear regression does not have

any hyperparameters, but random forest and ridge algorithm have the ability to tune the

hyperparameters to avoid the overfitting by penalizing the model. As discussed earlier,

ridge algorithm uses L2 regularization by shrinking coefficients for those input variables

that does not contribute much to the prediction work. In random forest regressor, the

hyperparameters are the number of decision trees. The more trees are defined, the time

complexity of the model will also increase, and it is not necessary that having more number

trees will provide more optimal results. The hyperparameters for both models mentioned

above are found by iterating through the list of possible parameter values. The optimal

hyperparameter values are identified by analysing the root mean squared error (RMSE)

and mean absolute error (MAE).

3.2.2 Root Mean Squared Error (RMSE)

RMSE is the standard deviation of the residuals i.e., a measurement for amount of error

in the model. It is calculated by taking the square root of average of square of the distance

between actual/true values and estimated/predicted values. This distance is termed as

an error. Lower the RMSE, better the forecast, i.e., closer the model is at finding the

best fit. It indicates absolute fit of the model to the data. RMSE is commonly used in

supervised machine learning algorithms.

RMSE =

√∑n
i=1 (Xobs,i −Xpred,i)2

n
(3.2)

3.2. EVALUATION 23

3.2 n = number of observations, Xobs is an actual value and Xpred is a predicted value.

The RMSE lends comparatively significant weight to large errors since the errors

are squared before they are averaged. In situations when significant errors are most

unwelcome, the RMSE is thus most helpful. Because of this, RMSE is sensitive to outliers.

3.2.3 Mean Absolute Error (MAE)

Mean absolute error is a model evaluation metric used with regression models for calculat-

ing the absolute error difference between predicted value and true value. It is calculated by

taking the sum of the absolute errors and then divide it with the sample size. Depending

on the absolute value of the error, each error makes up a percentage of the MAE. Because

RMSE involves the squaring of differences, a small number of noteworthy discrepancies

might cause the RMSE to rise over the MAE.

MAE =

∑n
i=1 | Xobs,i −Xpred,i |

n
(3.3)

3.3 n = number of observations, Xobs is an actual value and Xpred is a predicted value.

Similar to RMSE, the closer the value of MAE is to zero, the better, which indicates

a better model with lower error in its predictions. Unlike RMSE, MAE is not sensitive

toward the outliers because it is generally used when we do not want outliers to impact

the model’s performance.

3.2.4 R2 Score

R2 Score also known as coefficient of determination, it indicates the percentage of variance

in dependent variable that explained by an independent variable in a regression model.

Higher the R2 score, smaller the differences observed between actual and predicted value.

It is measured in scale 0-1. i.e., If score is 0.50 (50%), half of the actual variations can be

explained by the model.

R2 = 1− SSres

SStot

(3.4)

3.4 SSres stands for sum of square of residuals i.e., unexplained variation, while SStot

denotes total sum of squares which is total variation.

3.3. SHORTEST PATH PROBLEM 24

The score for all the machine learning model used in this study are performed using

R2 score.

3.3 Shortest path problem

Shortest path problem consists of finding the shortest paths between a given vertex/edges

in a network graph while avoiding null path or self-looping in the network. It is usually

calculated by considering the hop counts and/or least cost/weights as compared to all

other existing paths. The input graph for shortest path algorithms is made up of ver-

tex nodes and the connections that connect them. When edges are bidirectional, then

graph is called undirected. Similarly, when edges are unidirectional, they are termed as

a directed graph. It has several real-world use cases such as, it is used to automatically

find directions between locations such as road networks using google maps, network and

telecom communications, social network platforms for suggesting list of friends based on

mutual connections and interests, robotics and drones, power grid contingency analysis

and electronic designs.

For this study, an algorithm is implemented a single-source shortest path problem with

unweighted graph, where we want to compute the distance δ(s, t) from a single source

node s to every target node t. For an unweighted graph, i.e., all edges have the exact

cost, it is implemented using a simple breadth-first search.

3.3.1 Breadth-first search algorithm

The breadth-first search algorithm is a traversing algorithm that begins at the starting/-

source node and traverses the graph by exploring neighbouring nodes that are directly

connected to the source or current node. It continues to move towards the next level

of neighbouring nodes until it reaches the destined node. While traversing through each

node/vertices, it keep track of which vertices have been visited to avoid self-looping. Thus,

it keeps track of two categories of nodes – visited and not visited for avoiding cycles. A

queue (FIFO – First In First Out) data structures are used by BFS for storing adjacent

nodes to the selected or current node, so that node’s neighbours will be viewed in the

order in which it is inserted into the queue. BFS visits an adjacent unvisited node stored

in the queue and mark it as done and remove the previously visited vertex from the queue

in case no adjacent vertex is found.

Since the breadth-first search algorithm would, in the worst scenario, investigate all

vertices and edges, its time complexity can be expressed as O(|V |+ |E|). The symbol for

3.3. SHORTEST PATH PROBLEM 25

Algorithm 1 BFS algorithm

procedure BFS(G, s)
for each vertex v ∈ V[G] do

explored[v] ← false
d[v] ← ∞

end for
explored[s] ← true
d[s] ← 0
Q:= a queue data structure, initialized with s
while Q ̸=∅ do

u ← remove vertex from the front of Q
for each v adjacent to u do

if not explored[v] then
explored[v] ← true
d[v] ← d[u] + 1
insert v to the end of Q

end if
end for

end while
end procedure

the number of vertices is |V |, while the symbol for the number of edges is |E|.
The topologies for this study are generated using Watts-Strogatz algorithm which

introduces randomness based on the value of the probability parameter because of which,

it was not possible to pre-define the routing path from the selected node to the destined

node. Before configuring the network connections in the topologies shortest path between

the nodes are calculated based on the hop count using the Breadth-First search algorithm

and feed to the network configuration function.

Chapter 4

Implementation

This chapter discusses the design and the implementation of the above mentioned tech-

niques required for this study. This chapter will start with the environment setup and

proposed network design and present in-depth analysis of the systems and tools used for

exploring the predictivity of the QoT-E of the optical transmission.

4.1 Environment Setup

In this paper, topologies are made using Mininet-Optical emulator for generating the

required datasets for the prediction model and testing out the performance of the optical

transmission links. This tool simulates the physical behaviour and impairments of the

optical network and emulates the data plane of both packet and optical networks by

exposing SDN API’s to SDN controllers

Figure 4.1: Architectural overview of the Mininet-Optical emulator

26

4.1. ENVIRONMENT SETUP 27

Mininet-Optical creates an abstraction layer over the Linux kernel. At the bottom,

network subsystems are used for creating virtual network. The middle layer shows how

Mininet are incorporated and extended for implementing various optical networking de-

vices such as fiber optic cables, terminals, ROADMs, and EDFAs. The top layer is the

control plane interface for SDN controllers for emulated network elements. These same

interfaces are used by the controller to retrieve optical performance monitoring (OPM)

information, allowing us to collect optical signal power, amplified spontaneous emission

(ASE), and other noise data of individual channels, which also includes OSNR and gOSNR

and study selective effects that can manifest over an optical link. With the help of this

tool, the user will be able to customise the configuration of the network element individ-

ually by setting the wavelength dependency gain function in the EDFA and evaluating

its performance in the optical transmission system with signal power behaviour modelling

physical testbed performance. Due to the modular design of this system, it is possible

to extend and modify the transmission physics models. The ROADM nodes offered by

Mininet-Optical have Variable Optical Attenuators (VOA) at each output port to provide

a mechanism of variable attenuation to the optical signal as well as WSSs for providing

directions to the signals that are traversing. This simulation system is developed entirely

in python language and can be used as a stand-alone system for offline simulations and

for the purpose of prototyping, it can be imported as a library of APIs with access to

the descriptive models of the network elements, allowing for active reconfiguration. The

user can test their custom algorithms with the help of REST APIs exposed by the SDN

controllers and write their custom scripts in python programming language. With the

help of OPM, user can extract the required readings such as OSNR, gOSNR and ASE

noise information of each channel in the transceivers which will be used as a dataset for

training and validating the machine learning models.

Most of the network configurational work and machine learning algorithms are done

with the help of python programming language. For building the topologies two systems

are used –

1. Lab system with i7-7700k cpu, 16gb RAM and gtx 1080 on ubuntu 18.04 platform.

2. Virtual machines with i7-7700HQ with 4 cores, 12gb RAM and mx150 gpu on ubuntu

20.04 platform.

Machine learning models are built and tested using the Jupyter notebook and scikit-

learn, matplotlib, pandas and numpy libraries are used in this experiment. Mininet-

Optical emulator have provided official walkthrough for installing and running the em-

ulator on the system which further instruct users to install dependent libraries such as

4.2. TOPOLOGY GENERATION USING MININET-OPTICAL EMULATOR 28

Mininet, Open vSwitch and SDN controller. As the tool uses veth and network names-

paces for emulating the nodes, the users will require an administrative/root access to the

system to execute and build the topology.

4.2 Topology generation using Mininet-Optical emu-

lator

With the help of REST API, it become easier to write and test an algorithm for building

a topology of desired configurations. Initially, a ring lattice topology was created but

to make it easier for relating with the previous studies, the topology was switched to

linear topology with the similar behaviour of ring lattice. Topology with 20 nodes is

created with optical devices such as EDFA amplifiers, transceivers, ROADMs and each

connected with optical links. For this study, each connection is loaded with 80 channels

and the OSNR, gOSNR and ASE are collected for each channel of each connection. To

connect each channel, the terminals are configured with 80 transceivers and monitoring

mode are enabled for incoming traffic for capturing required statistics. Four amplifiers are

added between two neighbouring ROADM nodes with each with random ripple function.

Mininet-Optical supports three ripple functions which has predefined variations for each

channel – linear, wdg1 and wdg2. Wavelength dependent gain (wdg) is a critical parameter

in erbium-doped fiber amplifiers and the primary determinant of channel power divergence

and excursions in optical transmission systems, both of which vary with channel loading

in wavelength-division-multiplexed (WDM) systems. In an optical transmission system,

measurements of the wavelength dependent gain between two locations can be used to

estimate optical power excursions that occur during optical circuit switching. Because of

the dynamic nature of the topologies, custom data structures have to be used to store the

metadata information’s of the link mapped between the ROADMs for creating a switch

rule for all the connections.

Following are the sample snippets used for generating the topologies supported for

this study, description of each snippet are provided as followed:

def build(power=0 * dBm , N, k, p, connection=[]):

halfk = k // 2

ch_link = 80

links = neigh_list = neigh_metadata = roadm_links = {}

neigh_graph = nx.Graph ()

seed = np.random.RandomState(42)

nodes = list(range(1, N + 1))

4.2. TOPOLOGY GENERATION USING MININET-OPTICAL EMULATOR 29

rparams = {’monitor_mode ’: ’in’}

transceivers = tuple((f’tx{ch}’, power) for ch in range(1,

ch_link + 1))

tparams = {’transceivers ’: transceivers , ’monitor_mode ’: ’in’}

for node_num in range(1, N + 1):

self.addSwitch(f’r{node_num}’, cls=ROADM , ** rparams)

self.addSwitch(f’t{node_num}’, cls=Terminal , ** tparams)

self.addNode(f’s{node_num}’, cls=LinuxRouter)

self.addHost(f’h{node_num}’)

boost = (’boost ’, {’target_gain ’: 17 * dB})

spans = []

for c in range(1, 5):

ripple_func = random.choice(list(ripple_functions.keys()))

aparams = {’target_gain ’: distance * km * .22 , ’wdg_id ’:

ripple_func}

spans.extend([distance * km , (f’amp{c}’, aparams)])

To preserve the temporary topology-creation functions, their auxiliary methods, and

the routing algorithm, a class called LinearTopology was developed. The snippet above

is utilized to map the topology according to the inputs given to this function. The meta-

data of all connections that need to be initiated, which will have the information of starting

node and destination node required for calculating the routing path between them, are

also needed by this function. The topology’s total number of nodes, k, representing the

ROADM devices’ closest neighbours, Watts-Strogatz probability, p, and metadata are

all required. The initial stage of this approach generates a random seed variable and a

list of all host nodes in the topology, which are then utilized in the Watts-Strogatz al-

gorithm for comparison with the given probability and another for selecting the random

node. The strategy for storing the data necessary for route discovery is crucial for the

routing algorithm to operate flawlessly with minimal time complexity. On the algorithm’s

efficiency, it will have a noticeable effect. By feeding the information of the nodes and

the vertices/edges connected to the neighboring nodes into the graph, a non-linear data

structure, the structure of the topology is mapped (ROADM devices). The shortest-path

technique was made simpler to implement with the aid of the graph data structure. In this

topology, each connection will be loaded with 80 channels to simulate the wavelength load

and to support this, 80 transceivers are required to be configured in the line terminal to

support the transmission of all 80 channels. Both the ROADM and the line terminal ele-

ments are configured with monitoring mode enabled for incoming connections. For loop is

used for automating the creation of N number of host nodes, ROADMs, line terminals

4.2. TOPOLOGY GENERATION USING MININET-OPTICAL EMULATOR 30

and switches required for building the topology. The switches in the Mininet-Optical

tool are emulated by creating a virtual node with IP forwarding enabled.

The boost parameters are set for configuring the target gain achieved from the boost

amplifier residing between the neighbouring ROADM connections. In this case, the tar-

get gain is set to 17, denoted in the dB unit. Four amplifiers are configured between

the neighbouring ROADM nodes to amplify the signal over long distances. The following

information is needed to generate a span variable that can be used to setup each ROADM

with the same property. The connection length will be expressed in kilometres (km),

the configuration parameter for each amplifier will have target gain calculated depending

on the distance, and the ripple function will be chosen from the Mininet-Optical tool’s

linear and wavelength-dependent gain (wdg) default implementation. Using the random

module’s decision approach, the ripple function is randomly chosen for each amplifier.

Each amplifier is designed for a distance of 17 kilometres in this study, and to preserve

consistency, the topology will remain the same throughout. The distance between the

two nearby ROADMs in this instance will therefore be 17 ∗ 4 km.

for i = 1 to N:

for j = 1 to halfk # for ROADM <-> ROADM connection

for port = 1 to 80 # for bidirectional connection between terminal <->

ROADM

for port = 1 to 80 # for bidirectional link eth connection between

terminal <-> switch ports

self.addLink(f’h{i}’, f’s{i}’, port2=ch_link + 1) # ethernet link

between host <-> switch

Within the initial for loop used for creating the N number of nodes, three separate for

loops are used for building each network element and its connections. Later an ethernet

link connection between host node and the switch is established. This complete flow is

responsible for the topology building process and the breakdown of each for loop will be

discussed below.

4.2.1 ROADM ←→ ROADM connection

While building the connections between the neighbouring ROADMs, it was crucial to

store the port information of both the node links and the port number, which get used

later for creating a switch rules. If this information is not updated properly, the algorithm

will create a partial switch rule and the channels won’t be transmitted to the destined

node and get dropped. For storing this information, a simple object class is created which

will have the following variables –

4.2. TOPOLOGY GENERATION USING MININET-OPTICAL EMULATOR 31

1. node id denotes the identifier assigned to the current node.

2. neigh id denotes the identifier of the neighbouring roadm node.

3. lineout is a list of outgoing ports connected to the neigh id.

4. linein is a list of incoming ports in established from the node id.

5. reverse indicating whether the connection is in the reverse order i.e., neigh id is

connected to the node id, instead of vice-versa.

The same class provide a getter function to retrieve the information of single link

connection which will have linein and lineout. It is usually called while building a routing

connection information.

for j in range(1, halfk + 1):

neig_node = i % N + j

neig_node = neig_node if neig_node <= N else neig_node - N

if neig_node == 1 and i == N:

print(f"last node connection {i} {neig_node}")

continue

neigh_node = self.watts_strogatz_calc(i, neig_node , nodes , p, seed)

roadm_links.setdefault(i, []).append(neigh_node)

roadm_links.setdefault(neigh_node , []).append(i)

links[f’r{i}’] = links.get(f’r{i}’, {’linein ’: 1, ’lineout ’: 2})

links[f’r{neigh_node}’] = links.get(f’r{neigh_node}’, {’linein ’: 1, ’

lineout ’: 2})

lineout = links[f’r{i}’][’lineout ’]

linein = links[f’r{neigh_node}’][’linein ’]

neigh_list.setdefault(f’r{i}’, []).append(f’r{neigh_node}’)

neigh_graph.add_edge(f’r{i}’, f’r{neigh_node}’)

linein_con = []

lineout_con = []

for _ in range(5):

self.addLink(f’r{i}’, f’r{neigh_node}’, port1=lineout , port2=linein ,

boost=boost , spans=spans , cls=OLink

)

linein_con.append(linein)

lineout_con.append(lineout)

lineout += 2

linein += 2

connected_node = NodeInformation(f’r{neigh_node}’, f’r{i}’, linein_con

, lineout_con)

neigh_metadata.setdefault(f’r{i}’, []).append({f’r{neigh_node}’:

connected_node})

4.2. TOPOLOGY GENERATION USING MININET-OPTICAL EMULATOR 32

links[f’r{i}’][’lineout ’] = lineout

links[f’r{neigh_node}’][’linein ’] = linein

For this study, the topology with four neighbouring nodes is configured. Above snip-

pets are used for enabling this configuration. The neighbour node is calculated based

on the expression i%N+j to avoid the self-looping or connecting to a wrong node and

if check statement is used. To randomize the topology, the Watts-Strogatz function is

called, which will be discussed later in this section and based on the pre-defined probabil-

ity value, a new neighbouring node is picked. A roadm link variable is used for storing

the nodes and their neighbouring node’s information. This information is later used in

the calculation of the Watts-Strogatz algorithm. Each node’s used linein and lineout link

information is also maintained in a links variable to prevent the link used to connect

neighbouring nodes from being used twice. At the same time, the updated linein and

lineout port information is retrieved from the same variable, which is later used to estab-

lish the connections. The neigh graph variable is the graph data structure mentioned

before used for maintaining the topology metadata used for building the shortest routing

path. As the connections are getting loaded with 80 channels, to avoid the overlapping of

the transmission of the channels between the nodes, five wdm links are created between

each neighbouring ROADMs.

When switch rules are configured, the linein and lineout port are mentioned for both

the current node and the adjacent node where the connection are getting terminated, the

rule for each channel are set for the path because of which if there are one more connection

going through the same wdm link with the same channel configuration, then there are

high chances that the signal will get dropped by the roadm node. To avoid this, five links

are created. The linein and lineout port information of each this link are stored in the

NodeInformation class object to make it easier to retrieve the same information while

configuring the routing path. Both the linein and lineout ports of these five connections

should be unique and should not overlap with each other. The NodeInformation object

created earlier are stored in the neigh metadata variable which is later passed on to the

get connection detail function for building a routing path between the starting and

destination nodes.

4.2. TOPOLOGY GENERATION USING MININET-OPTICAL EMULATOR 33

4.2.2 Terminal ←→ ROADM and Switch ←→ Terminal connec-

tion

(a)

for port in range(1, ch_link - 1):

Bidirectional terminal <-> roadm optical links

self.addLink(f’t{i}’, f’r{i}’, port1=port+2, port2=roadm_line + port +

2, spans=[1*m], cls=OLink)

(b)

for port in range(1, ch_link + 1):

Terminal <->switch ethernet links

self.addLink(f’s{i}’, f’t{i}’, port1=port , port2=ch_link + port)

(a) This snippet is used to establish 80 bidirectional connections between the roadm

and the terminal element, which are placed within a span of one meter.

(b) Between the switch and the host, the same number of ethernet connections as

earlier are established.

for conn_node in connection:

get_path = self.bfs(neigh_graph , f’r{conn_node ["start "]}’, f

’r{conn_node ["end"]}’)

connection_detail.append(self.get_connection_detail(get_path

, neigh_list ,

neigh_metadata , f’r{

conn_node ["start "]}’))

Two functions are called to populate the shortest path information between the com-

municating nodes. Eight connections are established for this study and for each connec-

tion, the bfs() and get connection detail() functions are called. These functions will

be discussed later in the below section.

4.3. WATTS-STROGATZ ALGORITHM 34

Figure 4.2: Linear topology with p = 0, k = 4, and N = 20

Using the functionality previously discussed, the above linear topology 4.2 with 20

nodes is created. Each roadm is connected to the neighbouring roadm nodes with 5 WDM

links, and the roadm is connected to the line terminal with 80 links, as the transceiver

needs for each channel loaded in the connection. The connections between the terminal

and the switch are the same. The connection between the switch and the host can be

established with just one connection.

4.3 Watts-Strogatz algorithm

For this study multiple sets of topologies are required, for generating the network topolo-

gies, Watts-Strogatz algorithm is implemented, in which the existing topologies are modi-

fied based on the probability value set during the execution. Below is the implementation

of the algorithm used for this study –

def watts_strogatz_calc(curr_node , neigh_node , nodes , p, seed):

if seed.random () < p:

to avoid loop connection

choices = [e for e in nodes if e not in (curr_node , neigh_node)]

new_neigh_node = seed.choice(choices)

if curr_node in roadm_links:

if new_neigh_node in roadm_links[curr_node]:

4.4. CONFIGURING DYNAMIC ROUTING ALGORITHM 35

return neigh_node

if new_neigh_node in roadm_links:

if curr_node in roadm_links[new_neigh_node]:

return neigh_node

return new_neigh_node

else:

return neigh_node

The algorithm requires a set of parameters to calculate whether the connection needs

to be re-established with new node. Current node and current adjacent node identifier,

list of existing nodes, probability value set in the initial phase of the execution, and the

random seed variable. If the value generated by the random seed variable is greater

than the probability value, the adjacent node is returned as it is, and the connection

is not modified. If it is less than the probability value, the new node is selected from

the list of nodes from which current node and the old adjacent node are removed from

the same to avoid self-looping. Before returning the neighbouring node identifier, certain

checks are made to prevent the error of linking two existing neighbouring nodes. The

present roadm node and the recently formed neighbouring roadm node are subject to the

same conditional check by the algorithm. Only the new neighbour node identifier will

be returned to the calling method if all requirements are met; else the old adjacent node

identifier will be returned.

4.4 Configuring Dynamic routing algorithm

4.4.1 Implementing BFS algorithm

For calculating the shortest path between the starting and destination node, Breadth-

First search algorithm is implemented by using a queue data structure for storing the

traversed node information for avoiding self-looping scenario.

def bfs(graph , node , target):

visited = actions = []

queue = Queue()

start_node = node

if start_node == target:

return []

queue.push((start_node , actions))

while not queue.isEmpty ():

4.4. CONFIGURING DYNAMIC ROUTING ALGORITHM 36

node , action = queue.pop()

if node not in visited:

visited.append(node)

if node == target:

return action

for neighbour in graph[node]:

new_action = action + [neighbour]

queue.push((neighbour , new_action))

return []

Two variables - visited and actions are maintained within the functions for tracking

the visited node identifier and later for returning the hops/nodes it traversed to reach the

destination. In each iteration of the list of neighbouring nodes, if the node information is

popped from the queue and added to the visited list and the action variable is updated with

the new path/node information and returned to the calling function once the destination

node is reached, else null route is returned. This function plays a base for building the

routing path information between the connections. Later this information is passed to

get connection details() function to generate the switch rule required for configuring

the path in the optical transmission devices such as line terminal and roadm’s.

4.4.2 Generating switch rules information required by the route

configurating functions

ROADM acts as a routing mechanism for routing the transmission signal between the

roadm devices. linein and lineout port information is required along with the channel

that needs to be enabled while configuring the switch rules. Below is the implementation

used for building the routing information required for building the switch rules with the

help of hops information calculated using the BFS algorithm.

def get_connection_detail(shortest_path , neigh_list , neigh_metadata ,

initial_node):

connection = []

for path in shortest_path:

if path in neigh_list[initial_node]:

neigh_node = neigh_metadata[initial_node]

reverse = False

find_node , node = path , initial_node

elif initial_node in neigh_list[path]:

neigh_node = neigh_metadata[path]

4.4. CONFIGURING DYNAMIC ROUTING ALGORITHM 37

reverse = True

find_node , node = initial_node , path

else:

break

neigh_obj = [list(k.values ())[0] for k in neigh_node if list(k.keys

())[0] == find_node][0]

lineout , linein = neigh_obj.get_link ()

if reverse:

find_node , node = node , find_node

node_info = NodeInformation(node , find_node , linein , lineout ,

reverse)

connection.append(node_info)

initial_node = path

return connection

For the purpose of determining the connection path between the originating node

and the destination node, the function get connection detail() needs a set of input

parameters. The BFS algorithm determines the shortest path, the neigh list kept by the

topology building function previously mentioned 4.2, and the neigh metadata variable

containing the link connection information, including the linein and lineout port numbers

between the roadm connection stored during topology building activity. Finally, the

initial node designating the starting node of the connection is all needed The linein

and lineout port numbers are retrieved by iterating over each node/hop present in the

shortest path variable and checking a set of conditions. The reverse flag indicates

whether the connection between the nodes is in the reverse direction. For example, if

r2 is connected to r1 instead of r1 to r2, the port numbers linking the nodes will be

completely different, as will the initial node and destination node identifiers. After these

calculations have been made, the linein and lineout are retrieved using the getter

function written in the NodeInformation class. This function will select the linein

and lineout port number from the array of ports recorded during the construction of

the topology connections. This retrieved information along with the roadm’s identifier

are stored in a new NodeInformation object which will be kept in a connection array

referred while configuring switch rules and returned to the calling function.

Following the generation of the topology object (LinearTopo) and the connection

metadata, the Mininet-Optical emulator’s REST server is launched, which will process

any API requests sent to the SDN controller for handling operations such as installing,

deleting, or resetting rules, retrieving a list of nodes, links from terminals, roads, routers,

and switches, and updating the amplifiers’ properties. The RESTProxy object is also

4.4. CONFIGURING DYNAMIC ROUTING ALGORITHM 38

created for monitoring the reading generated on the line terminals for each channel. This

object is passed as a parameter to the monitorOSNR() function which will be discussed

later in this section. Once all the API related functionality is enabled, graphical plot of

the topology is plotted with the help of plotNet() function which uses matplotlib

and pygraphviz library. After visualization, the next task is to configure the switch

rules required by the roadm element for transmitting the optical signal. This process is

elaborated in the next section.

4.4.3 Configuring optical switching in ROADM devices

Before starting the transmission of the optical signals between the connections, switch

rules need to be configured in the roadm nodes for forwarding the signals coming from

the specific ports to be forwarded to other destined ports. Below is how configuration

function are called for configuring the network connections for the topology built for this

study –

for ch in range(channels_length):

count = 0

for end_conn in conn:

configNet(net , connection_detail[count], end_conn[’start ’],

end_conn[’end’], counter

, [channels[count][ch]])

end_conn[’ch’].append(channels[count][ch])

count += 1

start_transceiver(net , conn)

monitorOSNR(requestHandler , conn , connection_detail)

counter += 1

The 80 channels in each connection are randomly ordered, and the same channel lists

from each connection are utilized to construct the metrics for all the topologies mentioned

in this study. This keeps the metrics consistent and makes it simpler to compare the effects

of topology on the metrics. The channels list of all eight connections are kept in a CSV file

so they can be referenced to at a later time for all other topologies. In order to simulate

the wavelength loads on each connection and to monitor the influence on OSNR metrics,

each channel from this list of 80 channels is loaded into the connections one at a time,

until all the 80 channels are loaded in the connections. In the above implementation, a

nested hashmap data structure is used for storing the detail of the connections, such as

starting node, destination node, a file pointer for the CSV file and an array of channels

4.4. CONFIGURING DYNAMIC ROUTING ALGORITHM 39

currently loaded in the connection. An iterator object with a range of 80 channels is

created and iterated for every eight connections. Within the iteration of connections, the

switch rule configuration function and a function for monitoring OSNR and other required

metrics are called, and the readings are noted. At the same time, the loaded channels in

each iteration are updated in the array of channels which are later used for populating

the CSV file.

The implementation for configuring the switch rules for configuring the route for the

transmission of the optical signals is stated below –

def configNet(net , connection , start , end , ctr , ch):

N = net.topo.N

channels = ch

defaultEthPort = 90

defaultWDMPort = 2

counter = ctr

Terminal hostport <->(uplink ,downlink)

for ch in channels:

ethPort = defaultEthPort + counter

wdmPort = defaultWDMPort + counter

net[f’t{start}’].connect(ethPort=ethPort , wdmPort=wdmPort ,

channel=ch)

net[f’t{end}’].connect(ethPort=ethPort , wdmPort=wdmPort , channel

=ch)

counter += 1

Configuring ROADM to forward ch1 from one terminal to other e.g.

t1 to t2"

for index , conn in enumerate(connection):

counter = ctr

for ch in channels:

terminal_port = neigh_forward_port = counter + roadm_line +

2

counter += 1

node = conn.node_id

neigh_node = conn.neigh_id

default_linein = conn.linein

default_lineout = conn.lineout

if conn.reverse:

default_lineout , default_linein = default_linein ,

default_lineout

if index != 0:

if (conn.reverse and connection[index - 1].reverse) or (

4.4. CONFIGURING DYNAMIC ROUTING ALGORITHM 40

not conn.reverse and

connection[index -

1].reverse):

terminal_port = connection[index - 1].lineout

else:

terminal_port = connection[index - 1].linein

if index != (len(connection) - 1):

if conn.reverse and connection[index + 1].reverse:

neigh_forward_port = connection[index + 1].linein

elif connection[index + 1].reverse:

if conn.reverse:

neigh_forward_port = connection[index + 1].

lineout

else:

neigh_forward_port = connection[index + 1].

linein

else:

neigh_forward_port = connection[index + 1].lineout

net[node].connect(terminal_port , default_lineout , channels=[

ch])

net[neigh_node].connect(default_linein , neigh_forward_port ,

channels=[ch])

This function makes use of the previously generated shortest path with a list of hops,

switch rule information needed for configuring the rules that were generated by the pre-

viously mentioned function (add a reference to it), the starting and destination nodes of

each connection, Mininet object as a reference for calling the necessary class functions,

counter variable which is used to pick a unique port for each channel, and channel number

that needs to be added to the transmission signal. Since 80 channels will be loaded and

a different port must be used for each channel, the default EthPort and default Wdm-

Port numbering start with 90 and 2 correspondingly to prevent port number overlap.

The default port is combined with the counter variable to create a unique port for both

connecting nodes. The switching rule is applied in the terminal device’s connect() func-

tion, where the ethPort, wdmPort, and channel number parameters must be given. Once

the line terminal has been established with the rules, the roadm must be configured with

the switch rules in order to route the signals to the intended node. In order to update

the proper flow of the port numbers, the previously created hop information’s is iterated

in order, containing the linein and lineout port numbers. The rules are also configured

using the connect() method after a few conditions are met. When configuring the rules,

4.5. DATASET COLLECTION USING OPM FUNCTION 41

the reverse flag is used to determine the flow of signals between the two connecting nodes,

based on which the linein and lineout port numbers of both nodes are recalculated and

updated.

Figure 4.3: Topologies generated by the Mininet-Optical emulator

Figure 4.3 (a). A linear topology with probability β = 0 in which each node is con-

nected to the same number of nearest neighbours on either side. (b). A linear topology

with probability β = 0.32 (c) A linear topology with probability β = 0.50 (d). A linear

topology with probability β = 0.75

4.5 Dataset collection using OPM function

Once the routing rules are configured on both the roadm’s and the line terminal present

in the connection line, line terminal are switched on and the signal transmission are

4.5. DATASET COLLECTION USING OPM FUNCTION 42

initiated. The QoT is monitored using the OPM with the help of REST APIs exposed by

the controller. Below is the implementation done for the collecting the metrics for each

eight connection –

def monitorOSNR(request , conn , conn_detail):

for conn_index in range(0, len(conn)):

start = conn[conn_index][’start ’]

end = conn[conn_index][’end’]

writer = conn[conn_index][’file’]

ch_enabled = conn[conn_index][’ch’]

path = get_path_distance(conn_detail[conn_index])

start_response = request.get(’monitor ’, params=dict(monitor=f’t{

start}-monitor ’, port=None ,

mode=’in’))

end_response = request.get(’monitor ’, params=dict(monitor=f’t{

end}-monitor ’, port=None ,

mode=’in’))

start_osnr = start_response.json()[’osnr’]

end_osnr = end_response.json()[’osnr’]

populate csv row with initial value

csv_row = [0] * channels_length

csv_row = [1 if x + 1 in ch_enabled else y for x, y in enumerate

(csv_row)]

for (channel1 , data1), (channel2 , data2) in zip(start_osnr.items

(), end_osnr.items()):

s_osnr , s_gosnr = data1[’osnr’], data1[’gosnr’]

e_osnr , e_gosnr = data2[’osnr’], data2[’gosnr’]

s_ase , e_ase = data1[’ase’], data2[’ase’]

e_power_dbm = abs_to_dbm(data2[’power ’])

row = copy.deepcopy(csv_row)

row.extend([channel1 , e_power_dbm , path , s_ase , e_ase ,

s_osnr , , e_osnr ,

s_gosnr , e_gosnr])

writer.writerow(row)

Along with the RESTProxy object, connection detail variable, and an array of

all eight connections, they are supplied as parameters. A REST API request is sent to

the controller using the RESTProxy object, and the connection detail variable con-

tains all the hop-specific data needed to calculate the distance between the beginning

and the target nodes. The dataset needed for the machine learning model’s training and

4.6. IMPLEMENTATION OF ML MODEL FOR PREDICTING QOT 43

validation is filled up using this function. The dataset contains the following data that

was obtained from the emulator: 0 to 80 channels with values of one or zero indicat-

ing whether a particular channel has been enabled, the current channel number, signal

power in dBm, the distance between the start and destination nodes in km, amplified

spontaneous emission (ASE) noise, ONSR, and gOSNR values in dB. The readings are

gathered and saved in a CSV file for each channel that has been enabled when it has been

loaded onto the connection. Each of the eight connections has a separate CSV file. Each

dataset for the connection is of 3241, and the same process is performed with topology

of different probability value.

Below table describe the features and its datatype/unit present in the datasets –

feature Description
Loaded channels Channels currently loaded in the connection (Boolean)
channel Id of the new channel loaded to the connection. (integer)
e power dbm The power of the optical signal observed in the connection (float/dBm)
path Total distance between the start and the destination node. (float/km)
s ase ASE noise value registered at the starting node (float)
e ase ASE noise value registered at the destination node (float)
s osnr The reading ONSR value registered at the starting node (float/dB)
e osnr The reading ONSR value registered at the destination node (float/dB)
s gosnr The reading gONSR value registered at the starting node (float/dB)
e gosnr The reading gONSR value registered at the destination node (float/dB)

Table 4.1: Metrics collected using the OPM APIs

4.6 Implementation of ML model for predicting QoT

The following section describes the data transformation steps applied for selecting and

engineering the features for achieving the best prediction model. Once dataset is cleaned,

the dataset is split into training and testing data.

4.6.1 Dataset Pre-processing

The pandas and NumPy modules are used for loading, understanding, and preprocessing

the dataset required for the model. The dataset of each topology segregated based on

probability value are kept in a separate directory having eight dataset - CSV files for each

connection. The model for each topology is trained and evaluated separately. The CSV

4.6. IMPLEMENTATION OF ML MODEL FOR PREDICTING QOT 44

file of each topology is loaded and aggregated into a single dataset. To comprehend the

influence of the likelihood and its impact on the connections of the topology, the hop

count of each link is determined. The below figure indicates that with the increase in

the probability value of the Watts-Strogatz algorithm, the hop count for the connection’s

decreases, which will also decrease the distance between the connections. The probability

with a value of 0.0 has the most hop count and decreases compared with the topology of

p=0.32 4.4. This dataset is split into feature and target category in which 0-80 channels,

current channel (ch), power, path and source ase noise (s ase) are considered as the

feature set while reading of OSNR and gOSNR in the destination node are considered as

target dataset. This process is used for processing the datasets for linear regression, ridge

regression and random forest regressor model. This process is not viable while training

the neural network model.

Figure 4.4: Plot for hop count of each connection in each topology

For preprocessing the dataset for the neural network model, the needs to be normalized

and reshaped before start training the model.

from sklearn.preprocessing import StandardScaler

PredictorScaler=StandardScaler ()

TargetVarScaler=StandardScaler ()

Storing the fit object for later reference

y = y.reshape(-1,1)

PredictorScalerFit=PredictorScaler.fit(X)

TargetVarScalerFit=TargetVarScaler.fit(y)

4.6. IMPLEMENTATION OF ML MODEL FOR PREDICTING QOT 45

Generating the standardized values of X and y

X=PredictorScalerFit.transform(X)

y=TargetVarScalerFit.transform(y)

The sklearn library provides a function StandardScaler to standardize the dataset

by rescaling the distribution of values to make standard deviation to one and mean of

observed values to 0. This process is performed to both feature and target dataset.

To perform the standardization process, the fit() and transform() function is used for

computing the mean and standard deviation and later for performing standardization by

centering and scaling.

Once the feature and target dataset are preprocessed using respective methods, the

model building process is initiated. The model is created in two different ways: first,

by splitting the entire dataset into training and validating sets with an 80/20 ratio, and

second, by training and validating the model by splitting the set by increasing the dataset’s

ratio to understand the trade-off. In this case, the model is trained over a number of

iterations by first taking into account 20% of the entire dataset and then splitting that

dataset into an 80/20 ratio; after each iteration, the amount of data to be used keeps on

increasing until it uses the entire dataset.

4.6.2 Architecture of the Neural Network Model

There are multiple supported frameworks/libraries for implementing neural networks.

This study will use TensorFlow andKeras to build the neural network prediction model.

Both are open-source machine learning libraries offering high flexibility, portability and

performance among multiple platforms. The neural network architecture is composed of

four types of layers, namely – fully connected, convolution, recurrent and deconvolution

layer. A neural network model with fully-connected layers is used for this study which will

connect every neutron in one layer to every neuron in the next layer. The neural network

requires an activation function for transforming the weighted input from the node into

the output or activation of the node. The rectified linear activation function (ReLU) is

used here, this function returns zero if it receives negative input and for any positive value

it returns that value back.

normalizer = layers.Normalization(axis=-1)

normalizer.adapt(X_train)

model = keras.Sequential([

4.6. IMPLEMENTATION OF ML MODEL FOR PREDICTING QOT 46

normalizer ,

layers.Dense(84 , activation=’relu’, name=’fc1’),

layers.Dense(256 , activation=’relu’, name=’fc2’),

layers.Dense(128 , activation=’relu’, name=’fc3’),

layers.Dense(128 , activation=’relu’, name=’fc4’),

layers.Dense(128 , activation=’relu’, name=’fc5’),

layers.Dense(1)

])

model.compile(loss=customLoss ,

optimizer=tf.keras.optimizers.Adam(learning_rate=0.01))

model.summary ()

history = model.fit(X_train , y_train , batch_size=32 ,epochs=50 ,verbose=2,

validation_data=(X_test , y_test))

The model is configured with normalized layer then dense layer with custom shape

of input data, ReLU as an activation function and name for identifying the layer. The

learning rate must be carefully chosen because it affects the size of weight updates in

the neural network. If the rate is set too low, training will proceed slowly because it

makes very small updates to the weights, but if the rate is set too high, it can result in

unfavorable divergence in the loss function. The model is constructed with the custom

loss functions that are discussed below and an Adam optimizer with a learning rate of

0.01. The model is trained by calling the fit() function on the model with batch size of

32 and 50 epochs.

def customLoss(y_actual , y_pred):

Calculate the number of loaded channel

no_loaded_channels = tf.dtypes.cast(TFmath.count_nonzero(y_actual),

tf.float32)

Set the values of the unloaded channels to zero

modified_y_pred = TFmath.divide_no_nan(TFmath.multiply(y_pred ,

y_actual),

y_actual)

Calculate the loss

error = TFmath.abs(TFmath.subtract(modified_y_pred , y_actual))

loss = TFmath.divide(TFmath.reduce_sum(error), no_loaded_channels)

return loss

Instead of using the existing mean absolute error provided by the tensorflow, custom

loss function is used to calculate the actual mean absolute error based on this datasets

and model.

4.7. SUMMARY 47

Figure 4.5: Architecture of the neural network layers

The above figure 4.5 provides the summary of the network model built using the above

snippet which explains the name and type of the layer used and output shape of each

layer and input each layer receives.

4.7 Summary

In this section, implementation of the Mininet-Optical emulator, Watts-Strogatz and BFS

algorithms are elaborated. The process of selecting the dataset and preprocessing the

dataset is discussed here. The next section will elaborate about the hyperparameters

used for each machine learning models, results and evaluation of the ML model.

Chapter 5

Evaluation

The outcomes of the evaluation procedures outlined in the methodology 3.2 are reported

in the subsequent chapter. There will also be a discussion of the findings and informa-

tion on the key methods through which they were attained. It will be explained how

the experiment relates to other areas where the methodology excels as well as potential

future applications that might further enhance the findings. After the results, there is a

discussion segment where we will elaborate on how we compared all the output.

5.1 Selection of hyper parameters

Before training the model, it is necessary to identify and fine-tune the hyper-parameters

because their values vary for each model. Selected sets of potential hyper-parameters are

iterated over with the same datasets to determine their accuracy and error in order to

obtain hyper-parameters that fit the data more effectively. For these datasets, the findings

with the best hyper-parameters are chosen to be used in the models. Both the Random

Forest and Ridge regression regressor models are used in this process.

The values selected are shown in table 5.1.

Model Hyperparameter values
Linear regression N/A
Ridge regression 0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05
Random forest regressor 100, 200, 300, 1000

Table 5.1: The hyperparameters tested for each model

48

5.2. EVALUATION AND COMPARISON OF MACHINE LEARNING APPROACH49

The same dataset is used for both training and validation of the Ridge and Random

Forest regressor models for each selected potential hyperparameter value. In order to

comprehend and choose the hyperparameter with the lowest error value, the error is

determined using the RMSE method. According to the figure 5.1, the value 0.05 is

optimal when considering alpha penalty for the Ridge model, and the value 400 is the

best estimator for the random forest regressor model.

Figure 5.1: Error outcome for each hyperparameter value

5.2 Evaluation and comparison of Machine learning

approach

Data correlation techniques are used to understand how one set of data corresponds to

another set of data in order to comprehend the impact of features on the target dataset.

This mechanism aids in determining which features should be chosen and which may cause

significant damage during the fitting model. The corr functions provided by pandas aid

in calculating the pairwise correlation of columns. The calculated values are fed into the

heatmap function from the searborn library.

From figure 5.2 it is evident that the path distance, current loaded channel and ase

values have one of most correlation with the OSNR and gOSNR value recorded at the

destination node. The Pearson Correlation Coefficient is used by the corr function to

determine the degree to which two sets of data are linearly correlated. It is calculated

as the covariance of the two variables divided by the product of the standard deviation

of each data sample, i.e., it is a normalized calculation of covariance between the two

variables that falls between the range of -1 to 1.

5.2. EVALUATION AND COMPARISON OF MACHINE LEARNING APPROACH50

Figure 5.2: Pearson’s correlation coefficient heatmap of the metrics dataset

The result achieved from each model is discussed in this section.

5.2.1 Evaluation of regression models

To evaluate the performance of the each model, set of earlier discussed 3.2 evaluation

metrics are analysed to understand the error between the predicted and true value. Four

models were trained separately for each topologies to understand the impact of having

different topologies on the predictivity of the model. For each topology model, the dataset

of eight connections are combined to one dataset with 25920 entries. This combined

dataset are split in ratio of 80/20, 80% data is used for training the model and rest 20%

5.2. EVALUATION AND COMPARISON OF MACHINE LEARNING APPROACH51

dataset for testing and validating the model.

Probability Linear Reg Ridge Reg Random Forest
score RMSE MAE score RMSE MAE score RMSE MAE

p=0 0.998 0.036 0.019 0.993 0.197 0.142 0.999 0.003 0.001
p=0.32 0.997 0.116 0.023 0.982 0.218 0.148 0.999 0.003 0.002
p=0.50 0.995 0.161 0.035 0.978 0.188 0.115 0.999 0.003 0.002
p=0.75 0.995 0.172 0.045 0.979 0.123 0.206 0.999 0.003 0.002

Table 5.2: The observed outcome of the regression model for each topology.

This table 5.2 contains the findings from all the models that were utilized in the study.

With a root mean square error (RMSE) error of 0.036 and a mean absolute error (MAE)

error of 0.019, the topology for the linear regression model with probability β value set at

0 has the maximum accuracy of 0.998. In both the Ridge model and the random forest

regressor, the topology with probability β = 0 has the highest accuracy and the lowest

RMSE/MAE error when compared to the scores of other topologies. Despite the fact that

the score falls as the Watts-Strogatz probability rises, it is clear that the error also goes

down. In this case, the error represents the discrepancy between the observed/true value

and the anticipated value; the lower the error, the better.

Figure 5.3: RMSE error against the test ratio of the dataset

The dataset is initially randomly divided with a ratio of 20/80, and that 20% dataset

is further randomly divided into training and testing dataset in a ratio of 80/20, i.e., 80%

data for training the model and other 20% for validating the model. This allows us to

observe the error when the total amount of data used for training varied from 10% to

5.2. EVALUATION AND COMPARISON OF MACHINE LEARNING APPROACH52

100% of its supposed size. It is evident from the figure 5.3 that as the amount of dataset

used for training the model increases, the error also get decreases.

5.2.2 Evaluation of neural network model

Neural Network
probability score RMSE MAE
p=0 0.999 0.020 0.014
p=0.32 0.999 0.020 0.016
p=0.50 0.999 0.022 0.018
p=0.75 0.999 0.023 0.017

Table 5.3: The observed outcome of the neural model for each topology.

The neural network is built based on the previously discussed architecture 4.6.2. The

table 5.3 shows the observed results for each topology configured with different probability

value β. The outcome from the neural network is the same with the regression model, the

probability β = 0 provides the best accuracy and low error from both RMSE and MAE.

Figure 5.4: Line Plots of Mean Squared Error Over Training Epochs

The loss functions are used to estimate the loss of the model so that the weights can

be updated to reduce the loss on the next evaluation. For regression tasks, the mean

of squared loss/differences between the observed and predicted value is employed, which

is known as the Mean Squared Error (MSE) loss function. Because MSE is sensitive to

outliers, it is often utilized when a goal value is typically distributed around a mean value

and it is crucial to punish the outliers. In this investigation, the mean value and the

target value are most frequently found together and calculate more accurately as per the

5.3. SUMMARY 53

dataset, custom MSE loss function were used 4.6.2 to calculate the error more accurately.

For both the training (blue) and validation (orange) sets, a line plot 5.4 is made to display

the mean squared error loss over the training epochs. The model converged rather rapidly,

and both test and train performance stayed about equal, however the contour of the error

surface is not smooth, where modest changes to the weights are leading to slightly different

changes in loss. The performance and convergence behavior of the model suggest that a

neural network learning this problem might benefit from using mean squared error.

5.3 Summary

This chapter evaluated the design and the selection of hyperparameters used in training

the model, the correlation between the features and targets, and the performance of each

model prepared for four topologies. This research presents two case studies 5.2.1 done on

multiple approach taken for training the models which gave a promising results.

Chapter 6

Conclusions & Future Work

The work done in this dissertation is outlined in this chapter, along with its key contribu-

tions. This chapter concludes by exploring potential future research topics and directions,

as well as any limitations of this study.

6.1 Conclusion

In this thesis, the impact of topologies on the predictability of the Quality of transmis-

sion estimation is examined (QoT-E). To simulate optical communication topologies with

optical devices including roads, amplifiers, line terminals, and links, Mininet-Optical emu-

lator was utilized. This enabled to simulate optical transmissions and collect the necessary

metrics needed as datasets for training machine learning models. Later these generated

datasets were preprocessed and used for training the selected models developed for each

topology with different Watts-Strogatz probability values. The results that were discov-

ered were addressed in these section 5.2.1 5.2.2. The models were further divided into two

categories: one set of models was trained using varying amounts of its total amount of

datasets, ranging from 10% to its supposed size 5.3, and the other method used the total

amount of datasets for each topology and randomly divided it into 80/20 for training and

validating sets. It is observable from the results that with the increase in the probability

of the Watts-Strogatz’s probability β, the hop counts between the connections decreases

as more links between the adjacent roadm nodes are randomly rewired, and the existing

modified-linear topology becomes more leaned toward mesh-like topology. It also affected

the precision of the models, along with the hop counts. The model’s accuracy kept edging

down a little bit, and the error it produced was also slightly increased.

54

6.2. FUTURE WORK 55

6.2 Future Work

Since this research, was able to access the ability of machine learning algorithms in pre-

dicting the QoT-E on different topologies, there appears to be great potential for future

research along many directions. Some of the limitations and the future possibilities asso-

ciated with it have been discussed below:

1. Currently, the computations required to build the topology are high and consume

a lot of time to successfully make the topology and transmit the signals between

the nodes. With the aid of a more reliable setup and tool optimization, topolo-

gies including a greater number of nodes can be evaluated without necessitating a

significant time investment in studying and troubleshooting the topologies.

2. The metrics gathered from this setup are insufficient to fully comprehend the impact

of having multiple possibilities of connections in a single topology, which will have

a direct impact on wavelength load as well. This study was conducted by enabling

only eight unique connections on topologies of 20 nodes. Currently, 80 distinct con-

nections are being formed for a single connection as a result of a single transmission

creating a new unique link for each channel. If several connections are desired, 80xN

links must be constructed from a single node, which will take a long time to develop

the topology and make managing the connections difficult.

Bibliography

Abedifar, V., Shahkooh, S. A., Emami, A., Poureslami, A., and Ayoughi, S. A. (2013). De-

sign and simulation of a roadm-based dwdm network. In 2013 21st Iranian Conference

on Electrical Engineering (ICEE), pages 1–4.

Aiello, W., Chung, F., and Lu, L. (2000). A random graph model for massive graphs. In

Proceedings of the Thirty-Second Annual ACM Symposium on Theory of Computing,

STOC ’00, page 171–180, New York, NY, USA. Association for Computing Machinery.

Barletta, L., Giusti, A., Rottondi, C., and Tornatore, M. (2017). Qot estimation for

unestablished lighpaths using machine learning. In Optical Fiber Communication Con-

ference, page Th1J.1. Optica Publishing Group.

Bollobás, B. (1985). Random graphs. London-Orlando etc.: Academic Press (Harcourt

Brace Jovanovich, Publishers). XVI, 447 p. hbk: £ 52.00; $ 58.50; pbk: £26.00; $ 29.95

(1985).

Bouda, M., Oda, S., Vasilieva, O., Miyabe, M., Yoshida, S., Katagiri, T., Aoki, Y.,

Hoshida, T., and Ikeuchi, T. (2017). Accurate prediction of quality of transmission with

dynamically configurable optical impairment model. In Optical Fiber Communication

Conference, page Th1J.4. Optica Publishing Group.

Calvert, K., Doar, M., and Zegura, E. (1997). Modeling internet topology. IEEE Com-

munications Magazine, 35(6):160–163.

de Miguel, I., Durán, R. J., Jiménez, T., Fernández, N., Aguado, J. C., Lorenzo, R. M.,

Caballero, A., Monroy, I. T., Ye, Y., Tymecki, A., Tomkos, I., Angelou, M., Klonidis,

D., Francescon, A., Siracusa, D., and Salvadori, E. (2013). Cognitive dynamic optical

networks. J. Opt. Commun. Netw., 5(10):A107–A118.

Diaz-Montiel, A. A., Aladin, S., Tremblay, C., and Ruffini, M. (2019). Active wavelength

load as a feature for qot estimation based on support vector machine. In ICC 2019 -

2019 IEEE International Conference on Communications (ICC), pages 1–6.

56

BIBLIOGRAPHY 57

Doar, M. (1996). A better model for generating test networks. In Proceedings of GLOBE-

COM’96. 1996 IEEE Global Telecommunications Conference, volume MiniConfInter-

net, pages 86–93.

Dods, S. and Anderson, T. (2006). Optical performance monitoring technique using

delay tap asynchronous waveform sampling. In 2006 Optical Fiber Communication

Conference and the National Fiber Optic Engineers Conference, pages 3 pp.–.

Dı́az-Montiel, A. A., Lantz, B., Yu, J., Kilper, D., and Ruffini, M. (2021). Real-time qot

estimation through sdn control plane monitoring evaluated in mininet-optical. IEEE

Photonics Technology Letters, 33(18):1050–1053.

Geisler, D. J., Proietti, R., Yin, Y., Scott, R. P., Cai, X., Fontaine, N. K., Paraschis,

L., Gerstel, O., and Yoo, S. J. B. (2011). The first testbed demonstration of a flexible

bandwidth network with a real-time adaptive control plane. In 2011 37th European

Conference and Exhibition on Optical Communication, pages 1–3.

Ghobadi, M., Gaudette, J., Mahajan, R., Phanishayee, A., Klinkers, B., and Kilper, D.

(2016). Evaluation of elastic modulation gains in microsoft’s optical backbone in north

america. In Optical Fiber Communication Conference, page M2J.2. Optica Publishing

Group.

Hongsuda, Govindan, Tangmunarunkit, R., Jamin, S., Shenker, S., and Willinger, W.

(2002). Network topology generators: Degree-based vs. structural. In Proceedings of

the 2002 Conference on Applications, Technologies, Architectures, and Protocols for

Computer Communications, SIGCOMM ’02, page 147–159, New York, NY, USA. As-

sociation for Computing Machinery.

Jin, X., Giddings, R., and Tang, J. (2011). Experimental demonstration of adaptive bit

and/or power loading for maximising real-time end-to-end optical ofdm transmission

performance. In 2011 Optical Fiber Communication Conference and Exposition and the

National Fiber Optic Engineers Conference, pages 1–3.

Jong, K.-C. (2008). Q-factor monitoring of optical signal-to-noise ratio degradation in

optical dpsk transmission. Electronics Letters, 44:761–763(2).

Khan, F. N., Lau, A. P. T., Li, Z., Lu, C., and Wai, P. K. A. (2010). Osnr monitoring

for rz-dqpsk systems using half-symbol delay-tap sampling technique. IEEE Photonics

Technology Letters, 22(11):823–825.

BIBLIOGRAPHY 58

Khan, F. N., Lau, A. P. T., Lu, C., and Wai, P. K. A. (2011). Chromatic dispersion mon-

itoring for multiple modulation formats and data rates using sideband optical filtering

and asynchronous amplitude sampling technique. Opt. Express, 19(2):1007–1015.

Kilper, D., Bach, R., Blumenthal, D., Einstein, D., Landolsi, T., Ostar, L., Preiss, M., and

Willner, A. (2004a). Optical performance monitoring. Journal of Lightwave Technology,

22(1):294–304.

Kilper, D. C., Bach, R., Blumenthal, D. J., Einstein, D., Landolsi, T., Ostar, L., Preiss,

M., and Willner, A. E. (2004b). Optical performance monitoring. J. Lightwave Technol.,

22(1):294.

Kozicki, B., Takuya, O., and Hidehiko, T. (2008). Optical performance monitoring of

phase-modulated signals using asynchronous amplitude histogram analysis. Journal of

Lightwave Technology, 26(10):1353–1361.

Li, Z., Lu, C., Wang, Y., and Li, G. (2005). In-service signal quality monitoring and multi-

impairment discrimination based on asynchronous amplitude histogram evaluation for

nrz-dpsk systems. IEEE Photonics Technology Letters, 17(9):1998–2000.

Mata, J., Miguel Jiménez, I. d., Durán Barroso, R. J., Aguado Manzano, J. C., Mer-

ayo Álvarez, N., Ruiz Pérez, L., Fernández Reguero, P., Lorenzo Toledo, R. M., and

Abril Domingo, E. J. (2017). A svm approach for lightpath qot estimation in optical

transport networks.

Meng, F., Yan, S., Wang, R., Ou, Y., Bi, Y., Nejabati, R., and Simeonidou, D. (2017).

Robust self-learning physical layer abstraction utilizing optical performance monitoring

and markov chain monte carlo. 3rd European Conference and Exhibition on Optical

Communication : ECOC 2017 ; Conference date: 17-09-2017.

Mininet-Optical Project (2022). Mininet-optical emulator. https://mininet-optical.

org/. Last checked on Aug 15, 2022.

Mo, W., Gutterman, C. L., Li, Y., Zhu, S., Zussman, G., and Kilper, D. C. (2018). Deep-

neural-network-based wavelength selection and switching in roadm systems. J. Opt.

Commun. Netw., 10(10):D1–D11.

Rosenfeldt, H., Clarke, I., Frisken, S., Dash, G., Huang, X., Li, H., Cui, W., Zhang, J.,

Chen, J., Kong, Z., and Poole, S. (2015). Miniaturized heterodyne channel monitor

with tone detection. In Optical Fiber Communication Conference, page W4D.7. Optica

Publishing Group.

https://mininet-optical.org/
https://mininet-optical.org/

BIBLIOGRAPHY 59

Rottondi, C., Barletta, L., Giusti, A., and Tornatore, M. (2018). Machine-learning method

for quality of transmission prediction of unestablished lightpaths. J. Opt. Commun.

Netw., 10(2):A286–A297.

Shake, I., Takara, H., Uchiyama, K., and Yamabayashi, Y. (2001). Quality monitoring of

optical signals influenced by chromatic dispersion in a transmission fiber using averaged

q-factor evaluation. IEEE Photonics Technology Letters, 13(4):385–387.

Tomlinson, W. J. (2008). Evolution of passive optical component technologies for fiber-

optic communication systems. Journal of Lightwave Technology, 26(9):1046–1063.

Wang, Y., Hu, S., Yan, L., Yang, J.-Y., and Willner, A. E. (2007). Chromatic disper-

sion and polarization mode dispersion monitoring for multi-level intensity and phase

modulation systems. Opt. Express, 15(21):14038–14043.

Watts, D. J. and Strogatz, S. H. (1998). Collective dynamics of ‘small-world’ networks.

Nature, 393(6684):440–442.

Waxman, B. (1988). Routing of multipoint connections. IEEE Journal on Selected Areas

in Communications, 6(9):1617–1622.

Wu, X., Jargon, J. A., Wang, C.-M., Paraschis, L., and Willner, A. E. (2010). Ex-

perimental comparison of performance monitoring using neural networks trained with

parameters derived from delay-tap plots and eye diagrams. In 2010 Conference on Op-

tical Fiber Communication (OFC/NFOEC), collocated National Fiber Optic Engineers

Conference, pages 1–3.

Yu, Y., Zhang, B., and Yu, C. (2014). Optical signal to noise ratio monitoring using single

channel sampling technique. Opt. Express, 22(6):6874–6880.

Zhao, J., Lau, A. P. T., Qureshi, K. K., Li, Z., Lu, C., and Tam, H. Y. (2009). Chromatic

dispersion monitoring for dpsk systems using rf power spectrum. Journal of Lightwave

Technology, 27(24):5704–5709.

Zhenhua, Khan, Dong, F. N., Sui, Q., Zhong, K., Lu, C., and Lau, A. P. T. (2016).

Optical performance monitoring: A review of current and future technologies. Journal

of Lightwave Technology, 34(2):525–543.

	Abstract
	Acknowledgments
	Chapter Introduction
	Motivation
	Research Objectives
	Outline of the dissertation

	Chapter State of the Art
	Optical Network Communication
	Watts-Strogratz Model
	Mininet-Optical
	Machine learning Overview
	Supervised learning
	Unsupervised learning
	Reinforcement learning

	Previous Work
	Optical Performance Monitor
	Network Topology Generation
	Quality of Transmission Estimation (QoT-E) using Machine Learning

	Summary

	Chapter Methodology
	Machine learning algorithms
	Linear regression
	Ridge regression
	Random forest regressor
	Neural network

	Evaluation
	Hyperparameter optimisation
	Root Mean Squared Error (RMSE)
	Mean Absolute Error (MAE)
	R2 Score

	Shortest path problem
	Breadth-first search algorithm

	Chapter Implementation
	Environment Setup
	Topology generation using Mininet-Optical emulator
	ROADM -3mu ROADM connection
	Terminal -3mu ROADM and Switch -3mu Terminal connection

	Watts-Strogatz algorithm
	Configuring Dynamic routing algorithm
	Implementing BFS algorithm
	Generating switch rules information required by the route configurating functions
	Configuring optical switching in ROADM devices

	Dataset collection using OPM function
	Implementation of ML model for predicting QoT
	Dataset Pre-processing
	Architecture of the Neural Network Model

	Summary

	Chapter Evaluation
	Selection of hyper parameters
	Evaluation and comparison of Machine learning approach
	Evaluation of regression models
	Evaluation of neural network model

	Summary

	Chapter Conclusions & Future Work
	Conclusion
	Future Work

	Bibliography

