
The use of Real-World Assets in MakerDAO - A

Decentralized Autonomous Organization on Ethereum

Aakash Ranglani,

A Dissertation

Presented to the University of Dublin, Trinity College

in partial fulfilment of the requirements for the degree of

Master of Science in Computer Science (Future Networked

Systems)

Supervisor: Professor Donal O’Mahony

August 2022

Declaration

I, the undersigned, declare that this work has not previously been submitted as an exercise

for a degree at this, or any other University, and that unless otherwise stated, is my own

work.

Aakash Ranglani

August 19, 2022

Permission to Lend and/or Copy

I, the undersigned, agree that Trinity College Library may lend or copy this thesis upon

request.

Aakash Ranglani

August 19, 2022

The use of Real-World Assets in MakerDAO - A

Decentralized Autonomous Organization on Ethereum

Aakash Ranglani, Master of Science in Computer Science

University of Dublin, Trinity College, 2022

Supervisor: Professor Donal O’Mahony

In the world of traditional finance, individuals or organizations can borrow money from
financial institutions such as banks and in return, they have to deposit something of value
that acts as a security deposit against the loan amount. Although such systems have existed
for a long time, not everyone can access these financial services as they often require credit
checks and background verification processes that every individual or a small-to-medium en-
terprise may not pass.

With the emergence of Blockchain technologies such as Ethereum, which forms a secure
peer-to-peer network of nodes, it is now possible for any individual to access similar financial
services, thus eliminating the need for any middlemen. Smart contracts are the backbone
technology that enables these financial services which are decentralized in nature, unlike tra-
ditional financial services that are controlled and managed by a closed group of people.

MakerDAO is a peer-to-peer organization built on the Ethereum network that enables anyone
to lend and borrow money in the form of cryptocurrencies. The organizations built on this
peer-to-peer network are termed Decentralized Autonomous Organizations. Smart contracts
govern the loan and borrowing process. The loan is offered based on an over-collateralized
scheme where the borrower has to deposit an asset, the value of which is almost double the
amount of amount being borrowed to secure a loan.

MakerDAO previously supported only Ethereum-based cryptocurrencies as a security de-
posit to take out a loan in the form of Dai. Dai is a cryptocurrency having a value equivalent
to one US Dollar. Their efforts are now towards integrating real-world assets such as real
estate, credit invoices, and luxury cars into the MakerDAO ecosystem that act as collateral
against the loan amount being borrowed. In this work, we will explore the possibility of using
equities as collateral in the MakerDAO ecosystem, against which any entity can borrow Dai.

iv

Acknowledgments

Firstly, I would like to thank my supervisor and mentor, Professor Donal O’Mahony. Through

his assistance, knowledge, and support, I was able to gain invaluable insights in the field of

Blockchain which I’ve shared through this dissertation.

I would also like to thank all the professors for sharing their knowledge and expertise, also

for structuring this Master’s course as a practical learning experience.

I owe a tremendous deal of appreciation to my parents as well as everyone else who inspired

and motivated me throughout the Master’s Degree.

Aakash Ranglani

University of Dublin, Trinity College

August 2022

v

Contents

Abstract iii

Acknowledgments v

Chapter 1 Introduction 1

1.1 Motivation . 2

1.2 Structure of the Dissertation . 3

Chapter 2 State of the Art 4

2.1 Blockchain . 4

2.1.1 Elements of a Blockchain Network . 5

2.1.2 Cryptographic Hash . 7

2.1.3 Oracles . 12

2.1.4 Public Key Cryptography - Elliptic Curve 13

2.2 Ethereum Blockchain . 15

2.2.1 Ether & Gas . 16

2.2.2 Smart Contracts . 17

2.2.3 Bytecode & ABI . 19

2.2.4 Smart Contract Deployment . 20

2.2.5 ERC-20 Token Standard . 21

2.3 Decentralized Autonomous Organization (DAO) 22

2.3.1 How do DAOs Work? . 23

2.3.2 Traditional Organizations VS. DAOs 24

2.3.3 Decentralized Finance . 24

2.4 MakerDAO . 25

2.4.1 DAI Stablecoin . 26

vi

2.4.2 Collateralized Loans . 27

2.4.3 MakerDAO Collateral Vaults . 28

2.4.4 Keepers . 29

2.4.5 Real-World Assets . 30

Chapter 3 Design 33

3.1 Overview of the Approach . 33

3.2 Architecture . 36

3.3 Working . 39

Chapter 4 Implementation 41

4.1 Implementation Details . 41

4.2 Implementation Results . 46

Chapter 5 Conclusions & Future Work 47

5.1 Future Work . 48

Bibliography 50

Appendices 52

vii

List of Tables

2.1 A comparison of Decentralized Finance (DeFi) and Traditional Finance . . . 25

viii

List of Figures

2.1 Blockchain Structure . 6

2.2 Hashing Example . 8

2.3 Blocks and Transactions . 9

2.4 An example of Decentralized Oracle Network 13

2.5 Gas fees in Ethereum . 17

2.6 Smart Contract Compilation and Interaction 20

2.7 Smart Contract Deployment . 21

3.1 Architecture Diagram of Borrowing Dai backed by Equities using MakerDAO 37

3.2 Workflow Diagram of Borrowing Dai backed by Equities using MakerDAO . 40

4.1 Implementation of the Prototype . 41

4.2 Frontend of the Proof-of-Concept . 42

ix

Chapter 1

Introduction

Banks accept cash deposits, make interest-bearing loans, and return some of the interest

to depositors. That is a perfect example of a bank putting their and your money to work.

Typically, they’ll repeat this profit-generating process over and over, with you getting a small

percentage of it in the form of interest on your savings accounts. For the previous ten years,

however, that has been close to nothing: the average interest rate in the United States is

just 0.09%.[1]

Third parties who enable money flow between parties in the financial system, with each

demanding a charge for their services. Consider the case of using a credit card to purchase

a product. The charge is sent from the merchant to an acquiring bank, which then passes

the card information to the credit card network. The network clears the charge and asks

your bank for payment. Your bank approves the charge and forwards it to the network, who

then forwards it to the merchant via the acquiring bank. Because retailers must pay for

your ability to use credit and debit cards, each organization in the chain receives paid for its

services. All other financial transactions are expensive; loan applications can take days to

be accepted; and you may be unable to use a bank’s services while abroad.

Traditional finance can be unfair for the end users in many ways, considering the high trans-

action charges, slow processing of money transfers across borders, and even worse, since it is

centralized and owned by a closed group, they could deny services or change policies at their

will. We can eliminate these problems with the using of a technology called as Blockchain,

which is a peer-to-peer network of independent entities who can join and leave the network

at their free will, hence decentralized in nature.

1

With the use of peer-to-peer financial networks that employ security protocols, network

connectivity, software applications and hardware, it is possible to eliminate these middlemen

by enabling individuals, merchants, and businesses to execute financial transactions using

an emerging technology called Blockchain, and because of the peer-to-peer nature of the

applications, they are called Decentralized Finance or DeFi Applications. MakerDAO is a

DeFi service that is run on Blockchain as a lending credit system that provides loans at

predetermined interest rates that are higher than those in traditional finance, and it also

eliminates any uncertainty because it runs entirely on code, i.e Smart Contracts.

1.1 Motivation

In the traditional world of finance, an individual can take out a loan against assets like real

estate, luxury cars, credit invoices that act as collateral, or security deposit against the loan

being borrowed. Often, these financial services are available only to a few already wealthy

individuals or organizations, after the necessary credit checks have been approved by the

financial institution. MakerDAO has successfully eliminated the dependency on these finan-

cial institutions in order to secure a loan but it has done so mainly for virtual assets like

cryptocurrencies. It is moving towards integrating real-world assets, such as real estate, onto

the peer-to-peer decentralized finance network to allow any individual to be able to borrow

a loan against supported collateral and this would be done without any background verifi-

cation or credit checks. This would empower small-to-medium Enterprises greatly as well as

individuals.

In order to extend MakerDAO’s support to provide loans backed by real-world assets, this

work explores the possibility of using Equities as an asset against which a user could borrow

money. When an equity portfolio is pledged as security, MakerDAO will place the highest

value on publicly traded stocks of the company since they are simpler to sell in the event

that the borrower is unable to pay back the loan. Until the borrower repays the loan, lenders

continue to have authority over the shares. The shares would then be returned to the bor-

rower since they would no longer be required as collateral. This form of borrowing is called

as Equity Portfolio loan stock financing.

In this work we will explore the technologies and concepts required to build a prototype

2

of the use-case of borrowing a loan against Equity Portfolios as Collaterals. We will cover

Blockchain, which is a peer-to-peer decentralized network, Ethereum Blockchain that elimi-

nates the dependency on centralized entities through the use of Smart Contracts, and we will

be covering multiple other technologies in-depth which will lead to a better understanding

of the implementation of the prototype in further sections.

1.2 Structure of the Dissertation

• Chapter 2 - This will consist of the state of the art that enables MakerDAO to function

the way it does and to explore the technologies that allow MakerDAO to function

with Real-World Assets. This part will cover Blockchain, Ethereum, Decentralized

Autonomous Organizations (DAOs), Oracles, ERC20 Tokens, Smart Contracts, and

Decentralized Applications. This part will also cover how MakerDAO functions and its

components that are relevant to implementing a Real-World Assets as a collateral.

• Chapter 3 - This chapter will explore the design decisions taken while architecting the

distributed application prototype tokenizing equity portfolio and use it as a collateral.

• Chapter 4 - This chapter will cover the implementation aspects around technologies

and methodologies used for the prototype.

• Chapter 5 - This chapter will evaluate the prototype and assess the newly presented

idea.

• Chapter 6 - This last chapter consists of the conclusion and future work.

3

Chapter 2

State of the Art

2.1 Blockchain

A Blockchain is a shared network run by individuals or organizations which is not centrally

owned by any particular organization, thus making it a decentralized network of independent

nodes. A ”Block” is a data structure that holds information about transactions and each

block is cryptographically linked to the previous block, thus maintaining a chain of blocks

which is called as Blockchain. This chaining ensures that the information in a block cannot

be changed without altering the subsequent blocks of data, which guarantees a tamper-proof

data structure. This data structure acts as a ledger of records or blocks. Blockchains are

decentralized peer-to-peer networks, immutable, transparent, and they often have a network

currency called cryptocurrency.

Back in 2008, the need for financial institutions, or intermediaries, was the key problem

that the blockchain attempted to solve. It is for this reason that Satoshi Nakamoto, a

pseudo-anonymous identity of the person behind Bitcoin and Blockchain, proposed the no-

tion of a decentralized, peer-to-peer system. With that method, payments would be made

more quickly, securely, and with lower rates. The elimination of the middleman was the

fundamental objective. Thus, Blockchain is a philosophy as well as a technology. [2]

Blockchains have the following properties because of the way they’re designed:

• Decentralized - Decentralization in the context of blockchain describes the transfer of

power and decision-making from a centralized entity (an individual, an organization,

4

or a collection of such entities) to a decentralized network. Decentralized networks

aim to limit the amount of trust that participants must place in one another and to

prevent them from interfering with one another in ways that would impair the network’s

performance.

• Transparency & Flexibility - Since the identity on Blockchains are pseudonymous,

the transactions happening on chain are publicly verifiable. All the transactions that

happen on a Blockchain are visible publicly but the identities of the individuals are not

revealed because of the use of cryptographic keys as public addresses.

• Speed & Efficiency - Traditional financial institutions take a day or two to process

international transactions across borders, and they often have a very high fee as well

to process such transactions. Blockchain-based transactions are comparatively much

cheaper and faster as they go through within a few minutes typically.

• Security & Immutability - Hacking a blockchain is a lot more difficult than hacking a

centralized entity as there are thousands of blockchain nodes carrying the same copy

of blocks, it is fully duplicated and it would be nearly-impossible to hack all the nodes

and tamper the block data.

• Removal of counterparty risk - Blockchains, especially smart contracts, make it possible

to operate in a trustless environment that is purely driven by code. For example, an

insurance company may not approve a claim even though the conditions match the

written contract, but if the same rules were coded in a smart contract, the claim would

pass if the conditions are met.

These properties of Blockchain make it possible to have a system that everyone has equal

access to, a system that is not centrally controlled and cannot be modified by a closed group

of people to their benefit. Thus, enabling our use-case of being able to borrow money without

relying on any centralized financial institution like banks.

2.1.1 Elements of a Blockchain Network

It is important to understand the elements of a Blockchain network to realize the potential

and the impact of the applications being built on the Blockchain Network. It is because of

these underlying technical components, we can operate in a trustless environment. Without

an understanding of this, the financial applications running on the Blockchain would seem

like any other web application.

5

Blockchain Structure

The structure of the Blockchain is what guarantees Immutability. Along with the transaction

data, each block in a blockchain also has the hash of the block before it and also of the block

itself. Depending on the type of blockchain, a block may include different types of data. For

instance, transaction information such as sender, receiver, and coin count is stored on the

Bitcoin blockchain. Additionally, each block contains a hash, which you might think of as

a fingerprint. A hash, like a fingerprint, uniquely identifies a block and all of its contents.

A block’s hash is determined after it has been produced. The hash will change if anything

inside the block is modified. In other words, hashes are particularly helpful for tracking block

changes. A block is no longer the same block if its hash changes. Lastly, the hash of the

preceding block is present in each block. This effectively establishes a chain of blocks, and

it is this method that contributes to the security of a blockchain. [3]

Figure 2.1: Blockchain Structure
Image Source: Designing a Blockchain Architecture (Medium Article)

The Figure 2.1 shows a conceptual structure of a blockchain. We can observe that the

first block’s hash is stored in the second block and the second block’s hash is stored in the

third block. But let’s assume that a malicious actor manages to change the content of the

second block, the hash of the second block changes, and thus the third block’s previous

hash does not match the hash of the second block. Thus the malicious node would have to

re-create all blocks ahead of the second block. This is quite doable with modern computers

but blockchain’s proof-of-work mechanism ensures that it is not easy to mine a block. This

mechanism hinders the generation of additional blocks. In the instance of Bitcoin, calculat-

6

https://medium.com/mobindustry/designing-a-blockchain-architecture-types-use-cases-and-challenges-9894fb7b58e

ing the necessary proof of work and adding a new block to the chain both take roughly ten

minutes. By requiring you to recalculate the proof of work for every subsequent block, this

approach makes it difficult to manipulate the blocks.

A blockchain’s security stems from its innovative hashing and proof of work mechanisms.

Blockchains also secure themselves by being decentralized and distributed. A P2P network

that anybody is free to join is used by a blockchain to govern the chain rather than a single

company (assuming the blockchain is public). One becomes a node and receives a complete

copy of the blockchain when they join this blockchain network. The copy of the blockchain

can then be used by this node to confirm that everything is in order.

With this understanding, a user can build trust in the technology, to know that their data and

transactions would remain secure, instead of relying on a centralized entity’s infrastructure.

2.1.2 Cryptographic Hash

In the previous section we’ve covered the structural aspects of the Blockchain and observed

that hashing is an important aspect of the Blockchain, hence in this section we will explore

it in more depth and also cover its properties.

Hashing is mainly a way to produce fixed-sized data using a hash algorithm, and the gener-

ated code is represented using a string of characters that acts as a fingerprint of that data.

Hashing is similar to fingerprints in the sense that even though the fingerprints are small,

they contain a lot of important information. One of the examples of a hash function is the

256-bit Secure Hashing Algorithm, also known as SHA-256, it is quite common and also used

in Blockchains. As we can observe from Figure 2.2, any length of input results in the same

64-character hash value, also called as a hash digest. The hash functions have a property

called the avalanche effect that causes the hash value to change completely even if the data

is modified with the smallest of changes like changing the letter capitalization of one letter.

A cryptographic hash function is used for security purposes and it differs from the non-

cryptographic one in a number of ways. Although they’re much slower than non-cryptographic

hash functions, they’re much more secure and difficult to break. Cryptographic hash func-

tions need to have the following properties:

7

Figure 2.2: Hashing Example
Image Source: TechJury - Blog

• Speed - The hash of the data should be computed within a fraction of a second using

the hash function.

• Avalanche Effect - The smallest change in the data should result in a major change in

the hash digest or the hash value.

• Deterministic - For the same input, the hash function should always result in the same

output.

• Pre-image Resistance - You cannot get the input data from the hash value. It has to

be a one-way function.

• Collision Resistance - Two different messages should not be able to produce the same

hash value. [4]

Blockchain Nodes

Blockchain Nodes are what make up the Blockchain Network, to put it simply, Blockchain is

a network of independent nodes. A blockchain node is a computer that runs software that is

responsible for verifying all the transactions in each block, thus maintaining the accuracy of

the data and keeping the network secure. They validate the blocks that are generated by the

miners. When a block is added to the blockchain, all the nodes receive an update to their

ledger. Following are the types of nodes in a blockchain network:

• Full Node - Stores the entire blockchain data, although it is periodically pruned so

the node does not have all the data ranging back to the genesis block. This node is

responsible for verifying all the blocks and state of the blockchain, it also validates the

block. These nodes also serve network requests and data.

8

https://techjury.net/blog/what-is-cryptographic-hash/

• Light Node - Light nodes download block headers rather than the entire block data.

These headers merely provide an overview of the contents of the blocks. Any additional

data that the light node needs is obtained from a full node. Users can join in the

Ethereum network using light nodes without needing the robust hardware or high

bandwidth needed to run full nodes. The light nodes can access the blockchain with

the same capability as a full node, but they do not take part in consensus (they cannot

be miners or validators).

• Archive Node - These nodes generate a historical state archive and stores everything

stored in the full node. Even though this data takes up terabytes of storage, applications

like block explorers, wallet providers, and chain analytics may find archive nodes useful.

Blockchain Transactions

Having covered the types of nodes in a Blockchain network, we will now explore how trans-

actions like sending money from one account to another affect the Blockchain. Transactions

are instructions from accounts that have been cryptographically signed. The Blockchain

network’s state gets updated when a transaction is started by an account. Transferring cryp-

tocurrency between accounts is one of the most basic transactions you can do on a Blockchain,

there are other types of transactions we will explore further. For example, Alice wants to

send a unit of cryptocurrency to Bob, this transaction updates the state of the blockchain

and all the nodes in the network are notified about this transaction and they keep a record

of it. In the Figure 2.3 we can observe that a Block consists of a set of transactions T1, T2,

Figure 2.3: Blocks and Transactions
Image Source: Ethereum EVM illustrated

and T3, and once it is processed, all the nodes receive an update of this block and the state

of the entire Blockchain network changes as all nodes have this new block. Compared to

9

the traditional finance applications, the transaction records are maintained privately on the

company’s infrastructure, in case of blockchain, every node will maintain a copy.

Blockchain Miner

In case of Bitcoin, the first cryptocurrency, miners are high-powered CPUs that solve a

complex mathematical problem to win the next block of transactions and they’re rewarded

in Bitcoins to solve the complex problem. The process of bitcoin mining consists of verifying

transactions and it results in minting new Bitcoins. Miners, in case of Bitcoin, typically

take about 10 minutes to figure out the solution to that problem. This process of solving

a complex mathematical problem is called as proof-of-work, explained in detail in the next

section, which involves finding a value called as ”nonce” that will fit into the mathematical

puzzle. Once the problem is solved, the miners work on the next block, and once the block

is verified, it is stored in the nodes permanently, and becomes immutable. By leveraging

computing resources, you ”prove” that you have completed the ”job” by solving the puzzle.

Adding a block successfully is rewarded in the network’s cryptocurrency, for example Bitcoin

or Ether, although mining is often a process of brute force trial and error. The network’s

nodes check and verify new blocks once they are broadcast to them, updating everyone’s

knowledge of the blockchain’s current state. [5]

Blockchain Consensus

Consensus algorithms are crucial for confirming the legitimacy of distributed blockchain plat-

forms and are the method of establishing consensus among a group of individuals operating

in a trustless environment. All nodes in the network must reach consensus in order for the

blockchain’s state to advance and continue to grow. This is how a decentralized network’s

nodes are able to maintain synchronization with one another. There is no way to guarantee

that the state that one node considers to be true will be shared by the other nodes in a

blockchain without consensus for the decentralized network of nodes. While participants

each have their own subjective perceptions of the network, consensus seeks to present the

objective perspective of the state. It is the method through which these nodes converse,

reach consensus, and are able to create new blocks.

10

Proof-of-Work

The decentralized blockchain network reaches consensus, or agreement on things like ac-

count balances and the chronological order of transactions, because of the proof-of-work

process. This stops users from ”double spending” their currencies and makes it extremely

impossible to attack or manipulate the blockchain. It controls the rules and complexity of

the job that miners must complete. The ”work” itself is mining. It involves adding legitimate

blocks to the chain. This is significant because the length of the chain enables the network

to understand blockchain’s present state and follow the right chain. The network can be

more confident in the condition of the world as long as there is more ”work” being done, a

longer chain, and a higher block number. The longest chain is more likely to be the correct

one because it has undergone the most computational work.

The nonce is a value for a block that must be discovered by miners through a rigorous

process of trial and error under the proof-of-work protocol. A block can only be added to the

chain if it has a valid nonce. It is nearly impossible to add new blocks to a Proof-of-Work

network that delete transactions, add fictitious ones, or keep up a second chain. This is due

to the fact that a malevolent miner would have to consistently solve the block nonce faster

than everyone else. Proof-of-work is also in charge of minting currency for the system and

providing incentives for miners to work, in the form of Bitcoin, a cryptocurrency.

Compared to the traditional centralized services that have their own infrastructure for per-

forming computations and providing security, mining can be thought of as an activity achiev-

ing the same but by a network of independent nodes contributing their computation resources

and they are rewarded for the same. For our application which we will explore in later sec-

tions, it is important to understand that a network of independent nodes are performing

computations for which we pay the network as well, it is similar to traditional finance, ex-

cept that we only have to pay the network in some form of currency for every transaction

that we perform, not multiple intermediaries.

11

2.1.3 Oracles

The Blockchain Oracle Problem

Blockchains are unable to pull data from or push data out to any external systems as part

of their built-in functionality, they cannot interact with the open internet through APIs. A

blockchain’s isolated network of independent nodes is precisely what makes it so secure and

dependable because the network just needs to come to consensus on a very simple set of

binary (true/false) questions using information that has already been written in the ledger.

However, smart contracts need to be connected to the outside world in order to actualize

their potential use cases. Trade finance contracts require trade documents and digital sig-

natures to know when to release payments, financial smart contracts require market data

to determine settlements, insurance smart contracts require IoT and web data to decide on

policy payouts, and many smart contracts desire to settle in fiat currency on a conventional

payment network. Neither of these traditional services nor the information they provide are

directly available through the blockchain. An additional and distinct piece of infrastructure

called as an Oracle is needed to connect the blockchain’s on-chain and off-chain components.

[6] Because they increase the range of possibilities for smart contracts to work, oracles are

essential components of the blockchain ecosystem. Smart contracts wouldn’t be particularly

useful without blockchain oracles since they would only have access to data from their own

networks. It’s crucial to understand that a blockchain oracle is merely the layer that queries,

authenticates, and checks external data sources before relaying that information.

Decentralized oracles are required to effectively combat the oracle problem in order to avoid

data manipulation, inaccuracy, and downtime. A Decentralized Oracle Network, or DON

for short, creates end-to-end decentralization by bringing together a number of independent

oracle node operators and a number of trustworthy data sources.

The entire goal of a decentralized blockchain application is defeated by blockchain oracle

techniques that use a centralized entity to transmit data to a smart contract. The smart

contract won’t have access to the data needed for execution if the sole oracle goes offline, or

it will execute incorrectly based on outdated data. Even worse, if the sole oracle is corrupted,

the data given on-chain may be seriously flawed, which might result in smart contracts exe-

cuting with disastrous results. The ”garbage in, garbage out” dilemma refers to this situation

where poor inputs result in incorrect outcomes. Furthermore, since blockchain transactions

12

Figure 2.4: An example of Decentralized Oracle Network
Image Source: Blocklink Article

are automatic and unchangeable, a smart contract decision based on inaccurate data cannot

be undone, which means user cash may be lost forever. As a result, applications for smart

contracts cannot use centralized oracles. [7]

As we will explore in the sections ahead, for real-time market data on the pricing of equities,

we will have to rely on Oracles. Also, the existing oracles of MakerDAO get information

from a variety of separate feeds made up of people and organizations. A single asset and its

reference price are associated with each oracle.

2.1.4 Public Key Cryptography - Elliptic Curve

Since there is no centralized entity with a secured infrastructure responsible for the safety

of the user’s account, it is important to understand how Blockchain handles security aspects

from the user’s perspective. In our prototype, we will be using the concepts of public key, pri-

vate key, and addresses explained in this section, and these are applicable to any Blockchain

application in general.

A security technique called Elliptic Curve public key cryptography makes sure that the

data we exchange during a transaction on a blockchain network is secure. In a point-to-point

13

https://blocklink.info/decentralized-oracle-networks/

network like blockchain, the security component is essential because nodes in such a network

do not know and trust each other personally. A pair of keys are used in public key cryp-

tography, an asymmetric kind of encryption (public key and private key) that are employed

to encrypt/decrypt data and validate users. It is a way of providing digital identity to the

user using which one can make secure transactions on the blockchain network. These keys

are generated using unique algorithms in public key cryptography that are unidirectional,

meaning they first generate a private key, from it a public key, and then a public address.

We are unable to compute the private key from a public key or a wallet address from a public

key, i.e., we cannot reverse the sequence of generation. This data is all safely stored in Wallet

which is a piece of software. It keeps track of a blockchain node’s address, private key, public

key, and transaction balance, among other crucial pieces of data.

This process guarantees two things:

• At the sender’s end, the information is encrypted using the public key of the receiver

so that nobody outside the network can access or decrypt the encrypted data. Using

its own private key, only the intended recipient may decode and read the message.

• Utilizing the sender’s private key to sign the data which verifies the sender’s identity and

establishes his legitimacy as a node in the blockchain network. The recipient confirms

this by using the sender’s public key. Digital signatures are used in this network user

verification method.

Every user or node in the blockchain network has a private key, which is a bit string. A

private key is similar to a password in that it can reveal our private information if it is

shared. We must therefore keep our private key secret from the network. The private key is

essentially stored in the digital wallets (software or hardware), as its security is crucial. The

key is typically stored in a wallet import format, which has a key length of 51 characters.

The length may vary based on the storage format.

A private key’s counterpart, a public key, is derived cryptographically from it. Every node

in the network has access to a public key. This facilitates a transaction’s verification by all

of the nodes in a blockchain network.

The digital signature is a crucial component of public-key cryptography in addition to the

private key and public key. If a transaction is not digitally signed by the sender’s private

14

key, it is not secure in a blockchain network. The information we transfer to other nodes is

encrypted using public and private keys, or cryptography, which assures that no one in the

middle can read or alter it. [8]

2.2 Ethereum Blockchain

Having covered the fundamentals of Blockchain that apply to the Ethereum network as well,

we will now explore Ethereum in-depth as it is the platform on which our prototype will be

built.

Ethereum is a blockchain that can be programmed. Ethereum, like any other blockchain,

is built on a peer-to-peer network protocol that connects numerous independent computers

throughout the world. Instead of limiting users to a few predefined activities (such as bitcoin

transactions), Ethereum allows them to run pretty much any programming they desire. The

code, which is referred to as smart contracts, is stored on the blockchain for anyone to engage

with.

The blockchain is maintained and updated by the computers (nodes) in the Ethereum net-

work. They also run the Ethereum Virtual Machine in Ethereum (EVM). The Ethereum

Virtual Machine, much like the Java Virtual Machine, is responsible for executing the pro-

grammed code and it essentially creates a level of abstraction from the executing machine.

On the blockchain, this computing power is used to run user-submitted code (smart con-

tracts). In compensation for the processing power utilized by the smart contract, the EVM

charges a very modest transaction fee to execute these. This cost is known as ’gas,’ and it is

paid in Ether, which is why Ether should not be viewed as a cryptocurrency, but rather as

the fuel that keeps the network running. Transaction records are immutable, verifiable, and

securely distributed over the network, providing participants with complete ownership and

visibility over transaction data. User-created Ethereum accounts send and receive transac-

tions.

The Ethereum Virtual Machine (EVM) is a fundamental component of the Ethereum Proto-

col and the Ethereum system’s consensus engine. It enables anyone to run code in a trustless

environment where the outcome of execution is guaranteed and completely predictable (i.e.,

smart contract execution). A system that tracks execution costs allocates a fee in Gas units

15

to each instruction executed on the EVM.

Similar to traditional financial services that levy multiple charges behind every transac-

tion like transaction fees, the Ethereum network also has a charge associated with every

transaction that the user must pay in the form of Gas, the fuel to keep the network running

which we will explore in detail in the following section.

2.2.1 Ether & Gas

Ether (ETH) is the native cryptocurrency of Ethereum. The purpose of Ether is to incentivize

computation on the Ethereum blockchain by providing an economic benefit for participants

to verify and execute transaction requests and provide computational resources to the net-

work. Any member who broadcasts a transaction request is also required to provide a fee to

the network in the form of some ether, called Gas. The node which completes the process of

verifying the transaction, carrying it out, committing it to the blockchain, and broadcasting

it to the network will receive this fee.

The term ”gas” refers to the metric used to express the amount of computational power

necessary to carry out operations on the Ethereum network. Since each transaction in the

Ethereum network relies on computational resources, there are charges associated with it,

which is termed as Gas fees. The Gas fee is paid in the native currency of Ethereum which

is Ether, and the prices are denoted in gwei, which is a denomination of Ether. Each gwei is

equal to 0.000000001 ETH.

The Figure 2.5 shows how the amount of gas required for a particular operation is dependent

on the computational complexity or storage requirements for the same. It can be observed

that if the data of the smart contract has to be persisted on permanent storage, then the gas

required would be much higher. On the other hands, if the data is used only in the memory

of the EVM, then the gas required is much less. Every computational operation requires a

some amount of gas.

The amount of ether required to perform a computation is directly proportional to the

complexity of the computation. This prevents the network from being clogged by malicious

actors who might request for infinite computation, but for their request to go through, they

would have to pay a fee equivalent to the high computation requested. [5]

16

Figure 2.5: Gas fees in Ethereum
Image Source: Ethereum EVM illustrated

2.2.2 Smart Contracts

In this section we will cover Smart Contracts in detail as they are the critical to understand

as the applications that run on the Ethereum network are programmed using these Smart

Contracts. In our prototype, which we will look at in a later section, we have written multi-

ple smart contracts that are responsible for providing the desired functionality of borrowing

money against equities.

A smart contract is a program consisting of code, functions, and data, and it is assigned

a specific address on the blockchain when it is deployed. They are often written using So-

lidity programming language. Smart contracts themselves are a type of Ethereum account

and they have their own balance and can even initiate transactions on the network. Once

deployed, they can be invoked by anyone as per the programmed functionality. Users can

interact with these deployed smart contracts, they can initiate transactions, send ether, or

even execute functions written inside the smart contract. It is not possible to delete smart

contracts and transactions done on those are irreversible. [9] A computer software that oper-

ates on a blockchain network verifies, executes, and enforces smart contracts. The program

will start running after the smart contract’s terms have been accepted by all stakeholders.

As the contract is confirmed and upheld by the blockchain network, a third party is no longer

required. Smart contracts eliminate the potential of human mistake and can automate many

17

https://takenobu-hs.github.io/downloads/ethereum_evm_illustrated.pdf

operations that would often require human interaction because they are executed by code

rather than people. Similar to a typical contract, smart contracts outline the terms and

conditions of an agreement and also automatically uphold those responsibilities.

One of the limitations of smart contracts is that they cannot interact with the outside world,

the world outside blockchain is unavailable to the smart contracts because they cannot make

HTTP requests. Since external information could be unreliable in terms of consensus, the

design of the smart contract does not permit any outside interactions, which is essential to

maintain it’s decentralized nature and security. Although, in further sections, we will explore

the concept of Oracles that can be utilized to obtain information from the internet.

Smart Contract Anatomy

• Data - All of the contract data either resides in memory or in storage. Saving data in

storage is an expensive operation, hence we must clearly evaluate and store only that

data which is absolutely needed.

• Storage - State variables are persistent data, which is referred to as storage. On the

blockchain, these values are permanently recorded. Declaring the type is necessary so

that the contract can monitor how much blockchain storage it requires during compi-

lation.

• Memory - Memory variables are defined as values that are only kept on hand during

the execution of a contract function. These are far more affordable to use because they

are not permanently kept on the blockchain.

• Environment Variables - These are special global variables that provide information

about the blockchain or the current transaction. For example, ’block.timestamp’ holds

the current block’s epoch timestamp, and ’msg.sender’ holds the address of the sender

of the message (current transaction)

• Functions - These are either used to perform a set of operations or to set/get some

information. Internal functions can be accessed from within the contract or its derived

contracts, whereas external functions can be called from other contracts or via trans-

actions. Internal functions do not create an EVM call but external functions do create

one. Functions can either be public, which can be called from within the contract but

18

also externally, or they can be private, which would mean that they can only be called

from within the contract in which they are defined.

• View Functions - These do not modify the state of the contract, and they can be

thought of as ”getter” functions which simply access information that resides in the

smart contract.

• Constructor functions - These functions are called upon contract creation and they are

called only once when the contract is first deployed. These can be used to initialize

state variables.

Having covered the programmable aspects of a Smart Contract, it is important to understand

how the Ethereum network handles these smart contracts and how our application interacts

with them. The next section will cover Smart Contract Bytecode and ABI, which are crucial

components of applications being built on the Ethereum Blockchain.

2.2.3 Bytecode & ABI

Since the Ethereum network relies on the EVM (Ethereum Virtual Machine), smart contract

code written in high-level languages must be converted into EVM bytecode in order to be

executed. The data that our Solidity code is ”converted” into is bytecode. It includes binary

instructions for the computer. Numeric codes, constants, and other types of information are

typically stored in bytecode. Each step of instruction is an operation, or ”opcode,” which is

typically one byte (eight bits) long. They are known as ”bytecode” because they are one-byte

opcodes. To ensure that the computer understands exactly what to do when running our

code, every line of code is divided into opcodes. The bytecode is actually what is deployed

on the Ethereum blockchain. [10]

A Contract ABI is an interface to communicate with bytecode deployed on the EVM. They

specify the variables and methods that are available in a smart contract and that we can

use to communicate with it. We need a way to know what operations and interactions we

can initiate with smart contracts because they are converted into bytecode before they are

deployed to the blockchain. We also need a standardized way to express those interfaces so

that any programming language can be used to interact with smart contracts. For instance,

ABI acts as a bridge between your JavaScript code and EVM bytecode so that they may

communicate with one another when you want to invoke a function in a smart contract using

19

your JavaScript code. The architecture of the Contract ABI, EVM bytecode, and external

components is depicted in the Figure 2.6. The right side is interacting with the deployed

code, while the left side is compiling the code from Solidity to Bytecode. [11]

Figure 2.6: Smart Contract Compilation and Interaction
Image Source: Hackernoon

2.2.4 Smart Contract Deployment

In the previous section, we’ve explored what happens when we compile the smart contract.

In this section we will look at the deployment process.

The smart contract needs to be deployed on the Ethereum network for distributed appli-

cations to be able to interact with it. To deploy a smart contract, the deployer needs to

send a Ethereum transaction that will contain the compiled code of the smart contract and

there would be no recipient mentioned for this transaction. Deploying a smart contract costs

ether. Once the smart contract has been deployed, it will have an Ethereum address just

like any Ethereum account and this address can be used to call contract functions or initiate

transactions like sending Ether to the contract.

So far we’ve covered the building blocks of the Etheruem Blockchain covering the archi-

tecture behind running programmable smart contracts on it. In the following sections, we

20

https://hackernoon.com/ethernaut-lvl-0-walkthrough-abis-web3-and-how-to-abuse-them-d92a8842d71b

Figure 2.7: Smart Contract Deployment
Image Source: Medium Article

will focus on the application-level design aspects with respect to the prototype being built

as a part of this work.

2.2.5 ERC-20 Token Standard

ERC-20 standard establishes a common set of guidelines for Ethereum tokens to adhere to

within the wider Ethereum ecosystem. Developers can program how new tokens will operate

in this environment by using this standard. Additionally, it enables developers to foresee how

different token interactions would behave. These regulations cover the exchange of tokens

between addresses and the access to the data contained in each token. It can be thought

of as an interface from an object-oriented point of view, where any class implementing this

interface would have to provide implementations for all the functionalities mentioned in that

interface. ERC-20 token is a fungible token which means that each token is identical to every

other token in the set. This is comparable to how a US dollar is practically identical to every

other dollar (at least in the digital realm). Each set of ERC-20 tokens is identified by a ticker

symbol, such as DAI (MakerDAO’s stable cryptocurrency) or LINK (Chainlink’s currency).

Cryptocurrency tokens that carry out these features are known as ERC-20 tokens since

they adhere to that specification. The following are the three categories into which these

functions fall.

Getter Functions - functions used to retrieve information

• Total supply - this indicates the maximum number of tokens that can be minted

• Balance of - this gives the token balance owned by an account address

• Allowance - with the help of allowances, an account is able to use some tokens that

belong to a separate owner. For instance, if address A grants address B a 50 token

21

https://medium.com/coinmonks/compiling-and-deploying-ethereum-smart-contracts-with-pure-javascript-4bee3bfe99bb

allowance, address B is permitted to spend up to 50 tokens on address A’s behalf.

Functions - perform an operation or action

• Transfer - exchanges tokens between sender and receiver

• Approve - the owner of the tokens uses this method to allow a spender to spend on

behalf of the owners

• Transfer from - this mechanism allows the transfer of tokens from owner to recipient

using the allowance functionality

Events - emitted when action occurs

• Transfer - emitted when the specified number of tokens are sent from the sender to the

receiving address.

• Approval - emitted when the owner approves the spender to spend their tokens

In our prototype of borrowing a loan against Equities, we will be using this ERC-20 token,

named Equity Token with the symbol ”EQT”, to represent the Equity Portfolio so that it

can be integrated with the MakerDAO ecosystem as it supports the ERC-20 token standard.

This will be explained in detail in section 2.4.5.

2.3 Decentralized Autonomous Organization (DAO)

A Decentralized Autonomous Organization is any group that is governed by a transparent set

of rules founds on a blockchain or smart contract. All the decisions of the organizations are

taken transparently in a decentralized manner that allows the users to verify and operate in

a trustless environment. In fact, anyone can become a part of the organization at any point

of time and participate in the governing and decision-making processes. DAOs are operated

exclusively through code and have a completely flat hierarchy. They are a productive and

secure method to collaborate with like-minded people all across the world. Imagine them as

a group of individuals who collectively own and operate an internet-based company. In order

to ensure that everyone in the organization has a voice, proposals and voting are used to

make decisions. A DAO’s smart contract is its structural foundation. The agreement holds

the group’s funds and outlines the organization’s policies. Once the contract has gone live

on Ethereum, only a vote will allow for changes to the terms. Anything that is attempted

22

that is not permitted by the logic and principles of the code will fail. Furthermore, since the

smart contract also establishes the treasury, no one is permitted to utilize the funds without

the consent of the group. DAOs are therefore not dependent on a centralized authority.

Instead, decisions are made jointly by the group, and when votes are successful, payments

are immediately issued. [12]

2.3.1 How do DAOs Work?

The following are the general steps a DAO needs go through to launch sustainably, even

though the precise underlying mechanics powering a DAO vary across various blockchain

initiatives.

• Smart Contract Setup - The underlying rules must be specified and encoded in a

number of smart contracts before a DAO can be initialized and deployed. This stage

is arguably the most crucial for building a sustainable and autonomous DAO, as any

initial mistakes or overlooked details could potentially destabilize the project down the

road. This is because future changes to the DAO’s operational workflows, governance

system, and incentive structures will need to be approved by the community through

a voting mechanism in order to take effect, hence this stage also involves extensive

testing of the smart contracts.

• Funding - A DAO requires funds to function after its founders have established the

smart contracts that will control it. The production and distribution of some kind

of internal property, like as a native currency that the DAO can spend, use in voting

processes, or use to reward specific activities, is included in the DAO’s smart contracts.

From there, anyone or organizations who are interested in supporting the DAO’s ex-

pansion can buy or otherwise obtain the native token of the DAO, which usually entails

gaining voting privileges.

• Deployment or Launch - All of a DAO’s choices are made by consensus vote after it has

enough funding to be put into use. As a result, all token owners turn into stakeholders

with the ability to suggest changes to the DAO’s operations and financial management.

The DAO’s stakeholders work towards the best result for the whole DAO network

considering that the token distribution policy and consensus processes specified in its

underlying smart contract architecture are well-designed. As a result, the emerging

DAO organization is free to function without the guidance of its founders or any other

23

central authority. DAOs are open source, which generally guarantees complete openness

and immutability. All of their rules, transactions and other activities are also recorded

on the blockchain and available for anyone to review. [13]

2.3.2 Traditional Organizations VS. DAOs

In traditional organizations, all employees are subject to employment contracts that govern

their interactions with the business and one another. Their rights and obligations are gov-

erned by written agreements and upheld by a legal system that is governed by the country

in which they live. The legal contract will specify who can be sued in court for what if

something goes wrong or someone doesn’t keep their half of the bargain.

DAOs, on the other hand, entail a group of people interacting with one another in ac-

cordance with an open-source protocol that self-enforces its rules using smart contracts. The

native network tokens are given in exchange for securing the network and carrying out other

network duties and are used to reward individual behavior and encourage it to work toward

a group objective. A DAO’s members are not formally bound by any legal contracts or by

any other kind of external organization. Instead, they are directed by rewards linked to the

network tokens and completely open rules that are included in the software. [14]

2.3.3 Decentralized Finance

Decentralized Finance (DeFi) enables financial interactions between participants without

the use of middlemen. By doing away with a central authority and enabling peer-to-peer

transactions for financial services including banking, loans, mortgages, and more, it employs

the blockchain technology, mainly built on Ethereum platform, hence devoid of any cen-

tralized control over financial transactions. Participants may quickly carry out peer-to-peer

exchanges, manage their assets, and create decentralized applications. DeFi gives everyday

people access to the essential components of the activity currently done by banks, exchanges,

and insurers, such as lending, borrowing, and trading. Since services are managed by code

that anybody can view and scrutinize, they are automatic and safer than they were when

they were previously slow and susceptible to human error.

24

Decentralized Finanace (DeFi) Traditional (Centralized) Finance
The individual is has complete
responsibility for the security of their
assets on a DeFi Blockchain

The individual has to trust the organization
for keeps their assets secure

The asset management decisions rely
solely upon the individual to which
they belong

The organization can utilize and individual’s
asset as their own investments which could
be risky

Transfer of funds and assets happen
within minutes

Payments, especially international ones, can
take days due to manual processes

DeFi is open to all
Financial services offered by organizations
have the right to restrict anyone from their
services

Table 2.1: A comparison of Decentralized Finance (DeFi) and Traditional Finance

Decentralized Finance Applications [15]

• Personal Transactions - Ethereum is a blockchain that is made for sending transactions

in a safe and international manner. Ethereum enables international money transfers

that are as simple as writing an email.

• Borrowing - The decentralized applications built on Ethereum allow you to borrow

money by depositing an asset as a collateral.

• Lending - By lending your cryptocurrency, you can get interest on it and watch your

money increase in real-time.

• Insurance - Decentralized insurance seeks to reduce costs, increase payout speed, and

increase transparency. Increased automation makes insurance coverage more inexpen-

sive and accelerates payout times. The information used to evaluate your claim is

openly disclosed.

2.4 MakerDAO

MakerDAO functions fundamentally like a credit institution that grants loans with a set

interest rate. It is a potent peer-to-peer organization with the mission of creating technol-

ogy solutions for cryptocurrency-based borrowing, saving, and lending. On MakerDAO, the

entire loan and borrowing process is controlled by smart contracts, which are completely

25

decentralized and safe. A strong infrastructure layer is provided by MakerDAO for the de-

centralized Ethereum-based economy, also known as DeFi or Decentralized Finance, which

aims at providing financial services at a global level with the use of a stable cryptocurrency

called DAI. The project, started in 2015 by Rune Christensen, the current leader of Maker-

DAO, has succeeded in releasing the potential of DeFi across the globe.

The way that MakerDao operates and is managed sets it apart from other initiatives that

lend or manage stablecoins. Stablecoin projects frequently feature a central organization

working to maintain the stablecoin’s peg against a fiat currency. Lending projects typically

involve a corporation that manages the lending process from beginning to end. MakerDao

uses Ethereum smart contracts in its governance and automation systems to carry out lending

and stabilizing tasks independently of a single party.

2.4.1 DAI Stablecoin

One kind of cryptocurrency that is intended to keep its value constant over time is a stable-

coin. A stablecoin’s value is often tied to a certain real currency, frequently the US dollar.

In this scenario, one cryptocurrency unit often equals one unit of fiat money. The major

disadvantage of cryptocurrencies, like Bitcoin and Ethereum, is their extreme price volatil-

ity, which is why stablecoins, which have more stable pricing, have a strong attractiveness.

Cryptocurrencies have a relatively small market cap compared to conventional assets, which

causes their prices to be quite unstable. Even Bitcoin, the most widely used cryptocurrency,

has wildly fluctuating prices. Loans, derivatives, prediction markets, and other long-term

decentralized finance services built on blockchain depend on price stability and they are

hampered by price volatility, hence the need for stablecoins.

Tether is one Stablecoin that is most widely used and it has the highest market cap, i.e

the most amount of money (valued in US dollars) currently invested in this cryptocurrency.

Tether, having the Token Symbol of ”USDT”, is a cryptocurrency that aims to always main-

tain a constant price. Tether Limited developed the cryptocurrency USDT to serve as the

internet’s Digital Dollar, with each token having a value of $1 USD and being backed by $1
USD in actual assets. Since the USDT does not theoretically appreciate or depreciate, its

function is to offer liquidity and act as a hedge against market volatility. The reserves of

Tether are the only factor affecting the value of Tether (USDT). The value of Tether will

always equal one US dollar as long as it is backed 1:1. Since the company holds the reserves

26

privately, it is seen as a centralized stablecoin because the users have to trust the company

completely to hold the equivalent amount of US dollars worth assets as the number of USDT

coins that are there in the market. In contrast to Tether, DAI is decentralized, which implies

that no centralized entity controls the supply of new DAIs in circulation.

DAI is a decentralized cryptocurrency that aspires to keep its value relative to the US dollar

at 1 to 1. Therefore, 1 DAI must equal 1 USD. DAI may be stored and transferred directly

to anybody, wherever in the globe, without going through intermediaries like banks or other

centralized organizations because it is a cryptocurrency built on the Ethereum blockchain.

There are other additional stable cryptocurrencies that are tied 1:1 to the US dollar.

DAI has the following benefits of use:

• For transactions which require price stability like exchange of goods and services be-

tween retailers and individuals, DAI would serve the purpose as its value is kept stable

at 1 Dollar. It is difficult to price a product or service using ETH (Ethereum) or BTC

(Bitcoin) because their prices fluctuate greatly.

• Because DAI cryptocurrency is built on the blockchain, it can operate without the

need for a bank account and the transfer can be made across the globe with a very low

transaction fee and will always be quicker than an international fund transfer. They

can be more secure than your funds in a bank account if the individual uses correct

wallet and security techniques of storing the cryptocurrency.

• DAI is a great technique to add or exit holdings without going off-chain and will assist

to balance some of the overall risk in your portfolio.

2.4.2 Collateralized Loans

Lenders want to be sure that you have the means to pay back any loans before they give

them to you. Because of this, many of them need security of some kind. Collateral is a

type of security that lowers the risk for lenders. It aids in ensuring that the borrower fulfills

their financial commitment. If the borrower does fall behind on the loan, the lender has the

right to seize the collateral, sell it, and use the proceeds to cover the outstanding balance.

Traditionally, collateral may be in the form of real estate, inventory financing, invoices, or

any object that holds a certain value higher than the loan amount.

27

Collateralized loans are the foundation of open lending protocols in decentralized finance.

No one has a credit score or any other type of formal identify associated with the loan they

are taking out since DeFi supports open, pseudo-anonymous finance. As a result, much like

mortgages, the majority of DeFi lending applications will ask for collateral in order to hold

borrowers responsible for repaying the amount. However, the main distinction between DeFi

collateralization and conventional collateralization (as it currently exists) is that, in order to

collateralize a loan on MakerDAO or Compound, the borrower will have to over-collateralize

the loan. This indicates that the collateral must be worth more than the loan itself in order

to obtain the loan. Borrowers must put up a minimum of 150 percent of the loan value in

collateral for MakerDAO loans. To elaborate, if you wanted to borrow 100 Dai on Maker-

DAO, you would need to put up collateral of at least $150 in ether. In order to determine

the liquidation price and the quantity of Dai you will receive in return, you can select your

collateralization ratio. The price of ether at which your loan will be worth more than the

required minimum level of collateralization is known as the liquidation price. Because the

cryptocurrency market is extremely volatile, the risk of liquidation is high. To minimize this

risk, investors can either take out less DAI or collateralize their loans with more value to

avoid the penalty of liquidation, which gives investors a comfortable cushion in the event of

market volatility and to avoid the liquidation penalty. [16]

2.4.3 MakerDAO Collateral Vaults

A crucial element of the Maker Protocol is the Maker Vault, through which it generates Dai

against secured Collateral. The use of all the vaults affects the total amount of Dai available.

Users generate Dai against their Collateral, which the protocol then destroys when they pay

back their generated Dai balance. This procedure takes place on-chain, enabling complete

auditability of the Dai that is in circulation and the Collateral that supports it. In order to

prevent the liquidation of their positions, vault owners are required to maintain a Liquidation

Ratio and to over-collateralize their vaults, based on the principles explained in the previous

section. Any user may generate Dai by depositing Collateral into a Vault and, in exchange

for the generated Dai balance, paying a Stability Fee. The Stability Fee is an amount that

gets added to the Vault owner’s Dai balance by the protocol and this fee may vary with

time. To handle the inherent risk of generating Dai against collateral in Maker Vaults, and

to support the functioning of the Maker Protocol, including the DSR, Risk Teams, and other

expenses related to maintaining the protocol, a Stability Fee is charged on the loan amounts.

28

[17]

Additionally, a global Debt Ceiling is imposed on the Maker Protocol as well as a spe-

cific Debt Ceiling for each type of Vault. The maximum amount of DAI that may be created

using a certain vault type by all vault users is controlled by the Debt Ceiling parameter.

The transaction will fail and no DAI will be minted if a user attempts to mint DAI and

the quantity of DAI minted will put the vault type’s amount of DAI minted above its Debt

Ceiling. The Debt Ceiling parameter’s main objective is to give Governance control over

how much DAI may be generated utilizing a particular vault type. The risk exposure to the

collateral employed within a given vault type is reduced by managing the amount of DAI

minted from that vault type.

Users of the Vault are free to add or remove Collateral at any time and generate or repay

Dai as per their convenience. Owners of Vaults are permitted to engage with their Vaults as

long as they maintain a minimum Collateralization Ratio, which is designated for each type

of Vault as the Liquidation Ratio. A position becomes liquidated if a vault’s liquidation ratio

is exceeded. By closing out Vaults that fall short of the minimum needed Collateralization

Ratio, Liquidation helps to ensure that Dai is always backed by an adequate quantity of

Collateral, thus maintaining the stability of the protocol and the stablecoin Dai. In case the

value of the collateral drops below the liquidation price, the process of liquidating Vaults is

automated by the use of ”keepers” which will be explained in the following section.

2.4.4 Keepers

Keepers are typically bots that are run to interact with decentralized protocols in order to

”keep” them in a healthy state. The most well-known example is liquidation bots on Maker

or Aave, which liquidate (close) user loans with a health factor that is too low, to maintain

the financial stability of the system. Because blockchains are passive environments where

nothing happens unless a user interacts with the network to execute and validate a trans-

action, keepers are necessary. As a result, an external transaction is necessary to update

the status of a protocol on a blockchain and trigger further operations. While some of these

transactions can’t be completed automatically, they are required for protocols to work as

intended. Keepers are directly or indirectly rewarded with the protocol’s currency as they

bear the cost of providing computation resources.

29

In MakerDAO, there are five primary types of Keepers as follows:

• Bite Keeper - This keeper is responsible for triggering the liquidation of unsafe vaults,

the collateral value of which has dropped below the liquidation price. It then makes

the collateral available for sale. The Bite-Keeper can then take part in the collateral

sale by buying the collateral at a reduced price and selling it right away on the an

exchange to make money.

• Arbitrage Keeper - In order to profit from a price differential, an investor will use

the investment method of arbitrage to simultaneously buy and sell an asset in other

marketplaces. The returns can be impressive when multiplied by a high volume, despite

the fact that pricing variations are often tiny and transient. The Arbitrage-Keeper

continuously searches for lucrative arbitrage chances. The advice provided by this

Keeper on where to search and how to take advantage of arbitrage opportunities in the

Dai system is also quite helpful.

• CDP Keeper - CDP stands for Collateralised Debt Position. This keeper is responsible

for monitoring and managing the vault health by either topping up with additional

collateral or by repaying the Dai debt.

• Auction Keeper - The auctioneer may take part in surplus, bad debt, and collateral

auctions. It primarily focuses on interacting with smart contracts and enables pluggable

bidding models, making it simple for users to create their own auction participation

tactics without having to deal with complicated Ethereum and low-level smart contract

issues.

2.4.5 Real-World Assets

During the intial stage of MakerDAO, only Ether (ETH), a cryptocurrency on the Ethereum

platform, was supported as collateral, later it evolved into supporting multiple Ethereum-

based cryptocurrencies. The list of supported cryptocurrencies as collaterals can be found

on the OASIS App which is used to trade, borrow and lend. The most recent development

has been to integrate Real-World Assets into the system to be used as collateral. The market

cap of cryptocurrencies is roughly 2 trillion whereas the market cap of Real-World Assets is

about 650 trillion [18].

Implementation of RWAs creates prospects for a wide range of assets, including artwork,

30

music royalties, real estate, invoices, trade receivables, as well as any kind of tangible object

that can be tokenized, which can essentially be any asset. Additionally, it opens up amazing

prospects for people and Small-to-Medium Enterprises who are now unable to get capital

through conventional banking channels. Even though they only make up 1% of the entire

value locked, Maker’s real world assets presently account for 10% of the protocol revenue

[19]. This presents huge growth potential for the MakerDAO protocol but it comes with its

own set of challenges as well in terms of representing the Real-World Assets on-chain and

maintaining the legal and commercial infrastructure around it.

MakerDAO’s Dai will become more stable and safe to use if it is backed by various Real-

World Assets, the value of which do not fluctuate as much as those of cryptocurrencies,

thereby increasing its demand.

Tokenization of Real-World Assets

Asset tokenization is the process of transferring of ownership rights of a physical asset into a

digital token in the blockchain, usually Ethereum environment. This can be achieved using

an ERC20 token standard explained in Ethereum section, which leads to a bridge between

the tangible asset (such as real estate, a car, gold, etc.) and its representative token, that

is recognized by the law. A solid legal framework connecting the token and the asset is a

must for all tokenization schemes. To give the owner of a tokenized asset a legal right to

the actual physical item, sound legal structuring is necessary. The owner of the token has a

strong, legally-backed claim to ownership of the asset if it has been fully tokenized. Owning

the entire set of tokens (because tokens are frequently divisible) that correspond to an asset

means that the owner completely and unrestrictedly owns the asset. Effective tokenization,

for instance, would allow the owner of the token (or tokens) to have complete access to the

real estate property. When tokenization is done well, holding the token and the title to the

property are one and the same.

One of the first blockchain companies to support real-world assets (RWA) is Centrifuge.

Anyone can use the integration to fund a Centrifuge pool with assets and obtain a loan in

DAI, MakerDAO’s stablecoin. Any physical asset that may be digitized, including vehicles,

real estate, and other types, may be included in these assets. Tinlake is the first decentral-

ized application built by Centrifuge, which gives the DeFi ecosystem real-world yield. Once

tokenized, Tinlake assets can be freely transferred and used across the vast ecosystem of

31

DeFi products and services. [20]

The Maker (MKR) Token

MakerDAO has an ERC-20 token called Maker (MKR). This serves as a governance token,

allowing holders of MKR funds to cast votes inside the MakerDAO ecosystem to influence

changes and the direction of the project. The risk management and business logic of the

Maker system are voted on by MKR holders. The success and survival of the system depend

on effective risk management. Continuous approval voting mechanism is used in the system

governance process. As a result, each MKR holder has the ability to vote for as many

proposals as they choose, propose new proposals, and cast or withdraw votes whenever they

choose. The top proposal is the one that receives the greatest support from all MKR owners

and can be used to alter the system’s risk thresholds. Prior to the proposal’s changes being

applied, there is a security pause to give the community time to respond and stop malicious

proposals from disrupting the system. [21]

32

Chapter 3

Design

In the previous sections, we’ve explored the basics of Blockchain, Ethereum, Smart Contracts,

and various technicalities involved in MakerDAO. We’ve covered the aspects of borrowing

against collateral and how MakerDAO uses the principle of over-collateralization to main-

tain the stability of the financial platform. Using that knowledge, we will further explore

the design aspects of an application that would allow an individual to borrow Dai stablecoin

against their equity portfolio using a decentralized application that will act as a bridge be-

tween MakerDAO and the ”Equity Management Service”.

The term ”Equity Management Service” in this work refers to an entity that manages equi-

ties for individuals and institutions as well. The main function of this service is to hold and

transact equities in electronic form and facilitates the settlement of trades on stock exchanges

3.1 Overview of the Approach

The design covers the following scenario of borrowing Dai (or Dollars) using equity portfolios

as collateral.

An individual borrower approaches their Equity Management Service to take out a loan

against their equity portfolio. The Equity Management Service holds the individual’s eq-

uities in an electronic format at their end. The Equity Management Service, based on the

borrower’s instructions, can tokenize the borrower’s equity portfolio using our Decentralized

Application, Equity Tokenization dApp, which acts as a bridge between the Equity Manage-

ment Service and the MakerDAO ecosystem.

33

The Equity Tokenization application is responsible for representing the borrower’s equity

on-chain using the ERC-20 standard. Once tokenized, this Equity Token will be locked in a

Maker Vault and the Equity Management Service will hold Dai on behalf of the borrower, and

the Equity Management Service will give out a loan in dollars to the end user. This ensures

that the end user does not have to deal with any of the blockchain technologies or web portals

by themselves, and can easily get a loan based solely on the valuation of their equity portfolio.

In case the value of their equity portfolio drops below the liquidation price, the owner-

ship of the stocks will be transferred to the Equity Management Service, and they can then

decide further course of actions, whether to sell it off in the equity markets or to hold. As

far as MakerDAO is concerned, it will get the Dai back and it will be burnt, or in other

words, destroyed, to maintain a balance between Dai generated and the collateral that it

holds. In case of liquidation, MakerDAO will transfer back the Equity Token to the Equity

Management Service, thus maintaining financial stability.

The functional aspects of borrowing Dai using MakerDAO will remain the same for eq-

uity collateral as well, as they are for other collaterals. The user will be able to repay Dai at

any point, and get back their Equity Token, as well as the liquidation use case would remain

the same as it is for other collaterals.

Equity Management Service

This is an independent entity that is responsible for holding an individual’s equity stocks

in an electronic format. The individual would have to approach their Equity Management

Service in order to take out a loan using their equity portfolio.

Equity Portfolio

An equity portfolio is a collection of stocks that is owned by an individual. This portfolio is

digitally maintained and kept secure by an equity management service or a depository ser-

vice. Traditionally, these equities were held in the form of physical equity certificates which

indicated ownership and rights on those equities. Over time, the depository services or the

equity management services digitalized the service and enabled holding and trading of these

assets online.

34

In our application, we will tokenize a user’s equity portfolio using the ERC20 token standard

explained in section 2.2.5 and make it available on the blockchain. We’ve chosen ERC20 to-

ken standard because MakerDAO’s Collateral Vault functionality integrates well with ERC20

token stardard. The tokenization of the user’s equity portfolio would involve the equity man-

agement service to access the application called as Equity Tokenization dApp (Decentralized

Application), where the service acts based on the borrower’s instructions and it can enter the

name of the equity and the quantity the individual wishes to borrow a loan against. These

equities and their respective quantities would then be represented on-chain using the ERC-

20 token standard, and this token is called as ”Equity Token” and has the symbol ”EQT”.

There will be an Equity Token Manager that will act as a Factory Contract responsible for

generating different contracts for different borrowers and maintaining a record of all of those

Equity Tokens. A factory contract is basically one that produces other contracts, hence the

term ”factory”.

Once the Equity Token has been created, the ownership of it will remain with the Equity

Management Service as the borrower will not be able to access this token directly.

Equity Portfolio Value

Each equity in a user’s portfolio will have a value based on its current market price on the

exchange where it is listed. For example, at the moment the price of one Apple (AAPL)

stock is $170 on the NASDAQ Global Select Market. The equity portfolio’s value is the total

sum of all the equities’ current market price multiplied by individual equity quantities.

Since blockchains cannot access outside data because of the ”blockchain oracle problem”

as explained in section 2.1.3, we have to make use of the Decentralized Oracle Network of-

fered by Chainlink to fetch the prices of the equities. Chainklink Data Feed at the moment

offers data feeds for a number of equities like Apple, Amazon, Meta, Google, and a few more

but this could be extended to including all the equities listed on a particular exchange, if

enough demand builds up in the future. In our design, instead of building an oracle network

on the MakerDAO’s end to fetch the prices of equities, we can directly integrate the Chain-

link data feed in the ERC20 tokens to calculate the value of the equity portfolio. These

ERC-20 Equity Tokens (EQT) will hold the user’s equity names and quantities and upon

requesting the valuation of this token, the smart contract will query the Chainlink Oracle

Network to fetch the current market prices of each of the equities and then multiply with

35

https://docs.chain.link/docs/ethereum-addresses/

the user’s quantity to get the total value of the portfolio. This value would change based on

the market index.

MakerDAO Equity Vault

For real-world assets, at the MakerDAO end, we would have to create a Vault that supports

the Equity Token as it will have to access its valuation to calculate the amount of Dai

to be minted. Also, each vault type has different risk parameters and they would have

to be configured separately for Equity Token vault type as well. The Vaults can call the

”getValuation()” method on the ERC-20 Equity Token, which will then query the Chainlink’s

oracle network to fetch the current prices, and calculate the Equity Token vault and pass

it over to the equity token vault. Once the vault has the value of the equity token, then

based on the collateralization ratio for this vault type, it will mint Dai on the borrower’s

address. Similar to the Equity Token Manager, there is a Vault Manager that is responsible

for maintaining a record of different vaults.

MakerDAO Vault Keepers

In addition to creating a MakerDAO vault catering to the Equity Tokens, we would also

have to create a keeper type, as mentioned in the section 2.4.4, that would be responsible for

checking whether the equity token vault is at a healthy collateral level or not. In case the

total equity value of the ERC-20 Equity Token falls below the liquidation price, this keeper

would trigger the liquidation process that would involve the Equity Management Service to

get back the Equity Token and the Dai would be transferred back to MakerDAO and it will

be burnt.

3.2 Architecture

The figure 3.2 shows the architecture diagram of borrowing Dai using equity portfolio as

collateral. We will explore each of the blocks in this section.

Equity Management Service

This is the infrastructure part of the Equity Management Service that holds and manages

equities on behalf of their users. This is an independent pre-existing service that already

exist. Even though the company holds and manages equities, the rights on those equities

36

still belong to the users themselves and no action can be taken without the user’s approval.

In order for this entity to interact with the Equity Tokenization dApp, we will need an

integration layer that will be responsible for getting approval from the user and also the

details of which equities to take a loan against, along with individual equity quantities. The

loan request from the user would be a manual one where the user would have to contact

their Equity Management Service personally, and the employees of that management service

would be responsible for interacting with the tokenization dApp on behalf of the user. This

integration layer would be responsible for the following activities:

• Getting the user’s approval on which equities and their respective quantities to tokenize

through a One-Time Password authentication mechanism that the user would receive

once they request the processing of the loan.

• Maintaining a record of Ethereum addresses for each of the user loan accounts, and vault

addresses as well, as this equity management service will be responsible for managing

the loan process using MakerDAO.

Figure 3.1: Architecture Diagram of Borrowing Dai backed by Equities using MakerDAO

37

Equity Tokenization dApp (Decentralized Application)

This component is responsible for creating ERC-20 tokens based on the requests coming

from the Equity Management Service. This will be a decentralized application that the

Equity Management Service will use to tokenize an individual user’s equity portfolio. The

result of this component would be an Equity Token (EQT) that will be given back to the

Equity Management Service. The Equity Token Smart Contract would have the following

information:

• Equity Name - The name of the company that the user holds

• Equity Quantity - The quantity indicating the number of stocks of a particular company

• Borrower’s Ethereum Address - This will hold the borrower’s wallet address, Dai would

be minted to this address.

• Owner - This field will indicate the current owner of this equity token which would be

the Equity Management Service.

• Price Feeds - This would consist of all the oracle price feeds of equities which would

fetch the current market price of each individual equity.

• Valuation Method - This function would be responsible for calculating the current value

of this equity token based on the equity prices fetched using oracle price feeds.

This component would be dependent on the Chainlink’s Decentralized Oracle Network which

was explained in section 2.1.3, for fetching the prices of equities.

MakerDAO

At the MakerDAO’s end, we would need to develop the following two important components

to enable borrowing against Equity Tokens.

• Equity Token Collateral Vault - This would be a specialized Vault that would only

deal with Equity Tokens as collaterals. This vault would be able to interact with the

Equity Token to get its current valuation based on which it can decide how much Dai

to generate. The following information would be important to store in the Vault:

– MakerDAO’s Address - This is an Ethereum address representing MakerDAO’s

account that will be responsible for holding locked collaterals, it will gain the

38

ownership of the collaterals and the vaults will generate Dai in return of this

collateral lock.

– Borrower’s Address - This is the address on which Dai will be minted (created).

– Collateral Value - This is the total valuation of the equity portfolio

– Liquidation ratio - The value at which the collateral would be liquidated

– Equity Token address - This field holds the token address of the ERC-20 collateral

• Equity Token Collateral Keeper - At MakerDAO’s end, we would need to create a

keeper that would check the health of the Equity Token Vault, much like the keepers

explained in section 2.4.4. This keeper would be responsible for monitoring the current

equity portfolio value and will trigger liquidation of the asset in case the price drops

below the liquidation price.

3.3 Working

Figure 3.2 shows the steps involved in borrowing a Dai loan using Equity Portfolio as collat-

eral in the MakerDAO ecosystem. The steps are described as follows:

• 1. Borrower approaches their Equity Management Service with the intention of bor-

rowing a loan using their equity portfolio. At this stage, the borrower also allows the

Equity Management Service to access their equities against which they wish to take a

loan

• 2. Equity Management Service then utilizes the Equity Tokenization DApp to tokenize

the borrower’s equity portfolio. This results in an ERC-20 token called as Equity Token

(EQT) which consists of a digital blockchain-enabled representation of the borrower’s

equity portfolio.

• 3. An Equity Token is generated and the Equity Management Service has the ownership

of this token, while the borrower’s address is credited with this token. This Equity

Token can now interact with the MakerDAO’s ecosystem as it follows the ERC-20

token standard.

• 4. The Equity Management Service can now create a Vault that supports Equity

Tokens in the MakerDAO ecosystem and can lock this Equity Token as Collateral.

39

• 5. Once the collateral is locked, the MakerDAO Vault mints (creates) Dai based on the

collateralization ratio and transfers this newly generated Dai to the borrower’s address

that is managed by the Equity Management Service itself.

• 6. Once the Equity Management Service has access to the generated Dai, it then

offers a loan in Dollars to the borrower. This design ensures that the borrower remains

independent of this mechanism.

Figure 3.2: Workflow Diagram of Borrowing Dai backed by Equities using MakerDAO

40

Chapter 4

Implementation

4.1 Implementation Details

In the previous sections we’ve covered the technologies and the design aspects that would

enable the borrowing of Dai using Equity Portfolio as collateral in the MakerDAO ecosystem.

In this section we will explore an implementation of a proof-of-concept prototype that high-

lights the working pieces of this use case. The prototype was implemented and tested locally

and the figure 4.1 shows the different components involved in the successful implementation

of the prototype. In the following sections, we will explore each of the components.

Figure 4.1: Implementation of the Prototype

41

Frontend

The frontend was built using React Moralis library. React (also known as React.js) is a

free and open-source JavaScript UI library for creating interactive user interfaces. React

is a collection of pre-written JavaScript code that abstracts away basic UI tasks, allowing

developers to focus only on developing efficient UIs. React.js also makes use of JSX, a tem-

plating language that compiles your code to plain JavaScript functions. The abbreviation

JSX stands for ”JavaScript XML.” When developing UI elements, you can use JSX to blend

HTML syntax and JavaScript function logic. It also requires tag closure, as inspired by the

XML language.

React-Moralis is a wrapper around the functionalities provided by the Moralis framework,

which makes it easier to call functionalities such as checking whether the browser supports

interaction with the blockchain, and we have also used it to make it easier to call the smart

contract functions as it provides a function called as ”useWeb3Contract”, where we just have

to specify which function we wish to invoke, along with the required details such as contract

ABI, contract address (the address where the smart contract is stored on the Ethereum

Blockchain), function name, and parameters.

Figure 4.2: Frontend of the Proof-of-Concept

As it can be seen in figure 4.2, the Equity Management Service can perform the follow-

42

ing steps on behalf of the borrowers:

• 1. The service can enter the quantity of stocks of Apple, Google, and Microsoft against

which the borrower wishes to take a loan. Once the stock quantities are entered, the

”Tokenize Borrower’s Equity Portfolio” will create an ERC-20 Equity Token on the

borrower’s address entered in the beginning.

• 2. Once the Equity Token has been created, its address can be fetched using the ”Get

Borrower’s Equity Address”, and the ”Get Portfolio Value” will fetch the latest value

of the Equity Token based on the mocked stock prices shown below on the screen.

• 3. The service can then create a Vault using the Equity Token address and give

the ERC-20 spending allowance to MakerDAO using the ”Approve Token Exchange

between Borrower and MakerDAO” button. This will allow MakerDAO to perform

actions on the ERC-20 Equity Token.

• 4. Once the service clicks on ”Draw DAI”, the Vault will transfer the Equity Token to

MakerDAO’s address and it will generate Dai based on the collateralization ratio on

the borrower’s address.

• 5. The ”Update Stock Prices” button is used to simulate real-time stock prices updates

and it drops the values to nearly half for each of the three stocks.

• 6. The ”Liquidate” button is used to simulate liquidation of the collateral in case the

liquidation price for this Vault is hit, and the Vault becomes unsafe. The liquidation

process involves MakerDAO getting back the Dai minted and the Equity Management

Service gets the Equity Token back.

Metamask

MetaMask is a browser plugin that acts as an Ethereum wallet and is installed in the same

way that any other browser plugin is. It allows users to store Ether and other ERC-20 tokens

once loaded, allowing them to transact with any Ethereum address. Users may interact with

websites that host Ethereum-based apps and smart contracts using MetaMask, and it allows

users to save Ethereum-related information like public addresses and private keys like any

other Ethereum wallet (i.e. it turns your web browser into an Ethereum browser). It can

communicate with the website you’re now viewing as a browser plugin. It accomplishes this

by inserting the JavaScript library web3.js into each website you visit. Once injected, a web3

43

object will be accessible through window.web3 in the website’s JavaScript code.

As the Equity Management Service initiates the tokenization of the user’s equity portfo-

lio, the Metamask window opens up and the transaction would have to be approved from

the Equity Management’s account. Each and every transaction that modifies the state of

the blockchain must be approved from the Metamask plugin, and this costs some ether to

the account from which the transaction was initiated. Only those transactions that do not

modify the state of the blockchain, for example read operations, would not cost any ether to

the account from which the ”get” transactions are triggered, for example, to fetch the value

of the Equity Token, a Metamask transaction would not be triggered.

Hardhat

Since the prototype was developed locally, Hardhat framework seemed like the most appro-

priate choice as it simplifies the process of smart contract creation and deployment. It even

offers deployments of test or mock contracts that are quite helpful to simulate oracles or any

external contract dependency.

Hardhat is an Ethereum software development environment which is made up of various

components that work together to offer a complete development environment for compil-

ing, debugging, and deploying your smart contracts and dApps. When utilizing Hardhat,

Hardhat Runner is the main component developers interact with and it is a versatile and

extendable task runner that assists you in managing and automating the recurrent processes

associated with developing smart contracts and dApps.

Tasks and plugins are key to the architecture of Hardhat Runner. A task is a JavaScript

async function with certain metadata attached to it. Hardhat uses this metadata to auto-

mate some tasks for you. Parsing arguments, validity, and help messages are all handled. In

Hardhat, everything you can accomplish is defined as a task. Tasks can call other tasks, al-

lowing for the creation of complicated processes. Plugins as reusable pieces of code that add

extra functionality to the base layer. Users and plugins can override current tasks, allowing

workflows to be customized and extended. [22]

44

Hardhat Network

Hardhat includes the Hardhat Network, a private Ethereum network node intended for de-

velopment. The Ethereum protocol (that is, a client) has several implementations, the most

common of which being GETH (written in GO). Others, though, are written in other lan-

guages. The crucial thing is that they all adhere to Ethereum’s standards. To run your

files, Hardhat employs the JS implementation of the EVM. This indicates that Ethereum

JS is operating on your PC. That is how Hardhat understands what to do when you send

transactions, test your contracts, and deploy them internally.

Solidity and Smart Contracts

The smart contracts mentioned in 4.1 were written using Solidity programming language.

Solidity is an object-oriented programming language developed by the Ethereum Network

team primarily for building and developing smart contracts on Blockchain platforms. It is

used to establish smart contracts in the blockchain system that apply business logic and

generate a chain of transaction records. It serves as a tool for writing machine-level code

and compiling it for execution on the Ethereum Virtual Machine (EVM).

The following are the smart contracts written to achieve the functional aspects of the proto-

type.

• Equity Token - This smart contract represents the equity portfolio of the borrower as

it has a list of stocks along with the quantities that the borrower wishes to take a

loan against. This Equity Token is collateral that can be used to secure a loan. This

basically is the tokenization contract that converts and tracks a real-world asset into

an ERC-20 token that can function on the Ethereum Blockchain.

• Equity Token Management - This smart contract acts as a contract factory that gener-

ates other contracts. It is responsible for creating new Equity Tokens and keep a track

of all of those tokens.

• Vault - This contract will reside on the MakerDAO system but it was simulated locally

to demonstrate the functional aspects of it. It will hold the Equity Token as collateral

and keep a track of the valuation. This contract is responsible for generating Dai

45

against the collateral and lock the collateral on MakerDAO’s address once the Dai has

been generated on the borrower’s address.

• Vault Management - Similar to Equity Token Management, this is a contract factory

that generates and manages multiple Vaults that hold Equity Token as collateral.

• Dai - This is again a simulation of the MakerDAO Dai contract to show the functional

aspects of this prototype. The Vault generates Dai based on the valuation parameters

set for the Equity Token collateral.

• Oracle mocks - These contracts are responsible for simulation of live oracles where the

Equity Token contract will query an oracle to fetch the price of the stock. The details

for this are explained in the following section.

Oracles for Stock Prices

As seen in the screenshot 4.2, the proof-of-concept was built using 3 stocks, Apple, Google,

and Microsoft. The current market prices of these equities are displayed at the bottom.

These prices were fetched using a mocked oracle contract built by Chainlink, but in the

real world application, these would be fetched from the Chainlink oracle service offered on

the Ethereum network. It is achieved using an AggregatorV3Interface, the detailed guide

of which can be found here. For the prototype, I’ve used a MockV3Aggregator interface

developed by Chainlink to mock the stock prices of Apple, Google, and Microsoft. To mock

the stock prices, we’re simply required to extend this interface and pass the initialization

parameters, like the stock prices, in the constructor. Because it is built using an interface

mechanism, the method to access the latest stock prices remains the same irrespective of

whether it is running locally or on the blockchain network, so we will not require functional

changes.

4.2 Implementation Results

Through this tech stack, we were able to successfully implement the functional aspects of

the idea of borrowing a loan against equities by simulating the MakerDao ecosystem and by

building the bridge to connect the Equity Management Service with the MakerDAO system.

The code repository for the frontend can be found at this Github link.

46

https://docs.chain.link/docs/get-the-latest-price/
https://github.com/smartcontractkit/chainlink/blob/develop/contracts/src/v0.6/tests/MockV3Aggregator.sol
https://github.com/alwayscommit/blockchain-js/tree/main/demo-frontend

Chapter 5

Conclusions & Future Work

Through this work we have learnt about Blockchain, a decentralized network, and Ethereum

that makes decentralized applications possible with the use of Smart Contracts. We have

covered the important aspects of Decentralized Autonomous Organizations that give rise to

Decentralized Finance applications like MakerDAO. DeFi is a major revolution in the world

of finance because of the core principles on which it functions backed by technology, which

ensures that there’s no single entity in control but a group of people that operate the business

transparently using a Decentralized Autonomous Organization (DAO). The importance of

this technology lies in the fact that no individual has to rely on the trust of a centralized

entity, rather they can operate in a trustless environment powered by smart contracts that

are immutable and distributed ledgers, used as storage of records, unlike a centrally managed

storage.

MakerDAO makes it possible for any user from any corner of the world to borrow a loan

without having to go through credit checks. Although taking a loan was possible only against

Ethereum-back cryptocurrencies, MakerDAO is moving towards including real-world assets

on-chain that can be used as collateral. They have successfully implemented the functional-

ity of borrowing a loan against real estate, which was an inspiration to look into other asset

classes that can be brought on-chain as collaterals.

To extend onto the ideas of integrating real-world assets on-chain, we have explored the

possibilities of using Equities as collateral in the MakerDAO ecosystem and with the use of

a prototype, we have successfully implemented the functional aspects of this use case. The

design of the prototype can be scaled-out to function as a real-world application and the

47

real-world implementation aspects could also be achieved by using the architectural princi-

ples of this prototype.

For the first time in history, a large-scale financial system is emerging without the need

of middlemen. So far, DeFi applications cannot compete with traditional banking solutions

in terms of security, speed, and convenience of use. However, DeFi has created genuine,

operational apps that have already received billions of dollars in funding. These funds will

be utilized to create more competitive, user-friendly software.

5.1 Future Work

Integrating with MakerDAO’s Ecosystem

In this work, we’ve worked with a local prototype covering the functional aspects of equity

as collateral. This work could be extended into the MakerDAO ecosystem by having a

equity-backed integrated Vault that the MakerDAO can create and manage. Instead of

developing new oracles to fetch the prices of the equities, we could continue to use Chainlink’s

decentralized oracle network to fetch the prices. Although it contains pricing oracles for only

9 equities, this work could be replicated to cover an enter market index consisting of all the

stocks. But for a trial run, an experimental real-world implementation could be built using

the existing equities listed on the Chainlink oracle network as they are the largest companies

of the US stock market.

Automating Tokenization of Equities

The design of this approach requires the borrower to depend on the equity management

service to provide a loan, but it would be interesting to see if the equity management por-

tal can directly be integrated with the ”bridge” between the management service and the

MakerDAO ecosystem, the bridge that converts borrower’s equity portfolio into an ERC-20

token. Instead of relying on the equity management service, the borrower could directly

access his equities through an online portal and carry out the loan process by himself, equity

management service would still retain the ownership of the equities in case the borrower

defaults on their vault, the equity management service will automatically get the access to

the equities which they can then sell-off in the equity market. This would remove most of

the functional dependency on the equity management service, and they can provide this as

48

a service to their end users.

Auctioning Equities

In the current design, the Equity Management Service would get ownership of the equities

in case the Vault is liquidated, but using the existing design principles of MakerDAO’s

auctioning mechanism, these equities could be auctioned off to the users of the same Equity

Management Service, and the transfer of ownership of these equities could be reflected in the

Equity Management Service’s records as well.

49

Bibliography

[1] Zerion. Blogpost - introduction to decentralized finance (defi). https://www.finimize.

com/wp/guides/introduction-to-decentralized-finance-defi/, note = Last Ac-

cessed: 2022-08,.

[2] Deyan Georgiev. Blogpost - what is blockchain? https://techjury.net/blog/

what-is-blockchain/, month = Aug 15, year = 2022, note = Last Accessed: 2022-08,.

[3] Svetlana Cherednichenko. Blogpost - designing a blockchain architec-

ture: Types, use cases, and challenges. https://medium.com/mobindustry/

designing-a-blockchain-architecture-types-use-cases-and-challenges-9894fb7b58e,

month = Nov 10, year = 2020, note = Last Accessed: 2022-08,.

[4] Deyan Georgiev. Blogpost - what is cryptographic hash? https://techjury.net/

blog/what-is-cryptographic-hash/, month = July 06, year = 2022, note = Last

Accessed: 2022-08,.

[5] Joshua. Blogpost - intro to ethereum. https://ethereum.org/en/developers/docs/

intro-to-ethereum/, month = July 22, year = 2022, note = Last Accessed: 2022-08,.

[6] Chainlink. Blogpost - what is the blockchain oracle problem? https://blog.chain.

link/what-is-the-blockchain-oracle-problem/, month = August 27, year = 2020,

note = Last Accessed: 2022-08,.

[7] Chainlink. Blogpost - what is a blockchain oracle? https://chain.link/education/

blockchain-oracles, month = September 14, year = 2021, note = Last Accessed:

2022-08,.

[8] Data Flair Training. Blogpost - what is public key cryptography in blockchain. https:

//data-flair.training/blogs/public-key-cryptography/, note = Last Accessed:

2022-08,.

50

https://www.finimize.com/wp/guides/introduction-to-decentralized-finance-defi/
https://www.finimize.com/wp/guides/introduction-to-decentralized-finance-defi/
https://techjury.net/blog/what-is-blockchain/
https://techjury.net/blog/what-is-blockchain/
https://medium.com/mobindustry/designing-a-blockchain-architecture-types-use-cases-and-challenges-9894fb7b58e
https://medium.com/mobindustry/designing-a-blockchain-architecture-types-use-cases-and-challenges-9894fb7b58e
https://techjury.net/blog/what-is-cryptographic-hash/
https://techjury.net/blog/what-is-cryptographic-hash/
https://ethereum.org/en/developers/docs/intro-to-ethereum/
https://ethereum.org/en/developers/docs/intro-to-ethereum/
https://blog.chain.link/what-is-the-blockchain-oracle-problem/
https://blog.chain.link/what-is-the-blockchain-oracle-problem/
https://chain.link/education/blockchain-oracles
https://chain.link/education/blockchain-oracles
https://data-flair.training/blogs/public-key-cryptography/
https://data-flair.training/blogs/public-key-cryptography/

[9] Joshua. Blogpost - introduction to smart contracts. https://ethereum.org/en/

developers/docs/smart-contracts/, month = August 1, year = 2022, note = Last

Accessed: 2022-08,.

[10] Zubin Pratap. Blogpost - what are abi and bytecode in solidity? https://blog.chain.

link/what-are-abi-and-bytecode-in-solidity/, month = August 17, year = 2022,

note = Last Accessed: 2022-08,.

[11] Eiki. Blogpost - explaining ethereum contract abi evm bytecode. https://medium.com/

@eiki1212/explaining-ethereum-contract-abi-evm-bytecode-6afa6e917c3b,

month = July 16, year = 2019, note = Last Accessed: 2022-08,.

[12] Ethereum. Blogpost - what are daos? https://ethereum.org/en/dao/, month =

August 18, year = 2022, note = Last Accessed: 2022-08,.

[13] Cryptopedia Staff. Blogpost - what is a decentralized autonomous organization. https:

//www.gemini.com/cryptopedia/decentralized-autonomous-organization-dao,

month = June 28, year = 2022, note = Last Accessed: 2022-07,.

[14] Blockchain Hub. Blogpost - tokenized networks: What is a dao? https://

blockchainhub.net/dao-decentralized-autonomous-organization/, month = Au-

gust 16, year = 2019, note = Last Accessed: 2022-08,.

[15] Ethereum. Blogpost - what’s defi? https://ethereum.org/en/defi/, month = August

18, year = 2022, note = Last Accessed: 2022-07,.

[16] DeFiRate.com contributor. Blogpost - collateralized loans in defi. https://defirate.

com/borrow/collateralized-loan, month = August 16, year = 2022, note = Last

Accessed: 2022-07,.

[17] MakerDAO. Blogpost - stability fee. https://defirate.com/borrow/

collateralized-loan, note = Last Accessed: 2022-07,.

[18] MakerDAO. Youtube - makerdao - rwf youtube channel: The case for continuity. https:

//www.youtube.com/watch?v=H14oL9BM_-U, note = Last Accessed: 2022-07,.

[19] Ally Zach. Blogpost - makerdao’s dive into real world assets. https://messari.io/

article/makerdao-s-dive-into-real-world-assets, month = July 22, year = 2022,

note = Last Accessed: 2022-07,.

51

https://ethereum.org/en/developers/docs/smart-contracts/
https://ethereum.org/en/developers/docs/smart-contracts/
https://blog.chain.link/what-are-abi-and-bytecode-in-solidity/
https://blog.chain.link/what-are-abi-and-bytecode-in-solidity/
https://medium.com/@eiki1212/explaining-ethereum-contract-abi-evm-bytecode-6afa6e917c3b
https://medium.com/@eiki1212/explaining-ethereum-contract-abi-evm-bytecode-6afa6e917c3b
https://ethereum.org/en/dao/
https://www.gemini.com/cryptopedia/decentralized-autonomous-organization-dao
https://www.gemini.com/cryptopedia/decentralized-autonomous-organization-dao
https://blockchainhub.net/dao-decentralized-autonomous-organization/
https://blockchainhub.net/dao-decentralized-autonomous-organization/
https://ethereum.org/en/defi/
https://defirate.com/borrow/collateralized-loan
https://defirate.com/borrow/collateralized-loan
https://defirate.com/borrow/collateralized-loan
https://defirate.com/borrow/collateralized-loan
https://www.youtube.com/watch?v=H14oL9BM_-U
https://www.youtube.com/watch?v=H14oL9BM_-U
https://messari.io/article/makerdao-s-dive-into-real-world-assets
https://messari.io/article/makerdao-s-dive-into-real-world-assets

[20] Lucas Vogelsang. Blogpost - centrifuge: Where defi meets

real world assets. https://www.gemini.com/cryptopedia/

centrifuge-crypto-tinlake-tokenization-real-world-assets, month = Febru-

ary 22, year = 2022, note = Last Accessed: 2022-08,.

[21] MakerDAO. Blogpost - what is mkr? https://medium.com/@MakerDAO/

what-is-mkr-e6915d5ca1b3, month = Sept 15, year = 2015, note = Last Accessed:

2022-07,.

[22] Hardhat. Blogpost - getting started with hardhat. https://chain.link/education/

blockchain-oracles, month = August 14, year = 2022, note = Last Accessed: 2022-

08,.

52

https://www.gemini.com/cryptopedia/centrifuge-crypto-tinlake-tokenization-real-world-assets
https://www.gemini.com/cryptopedia/centrifuge-crypto-tinlake-tokenization-real-world-assets
https://medium.com/@MakerDAO/what-is-mkr-e6915d5ca1b3
https://medium.com/@MakerDAO/what-is-mkr-e6915d5ca1b3
https://chain.link/education/blockchain-oracles
https://chain.link/education/blockchain-oracles

	Abstract
	Acknowledgments
	Chapter Introduction
	Motivation
	Structure of the Dissertation

	Chapter State of the Art
	Blockchain
	Elements of a Blockchain Network
	Cryptographic Hash
	Oracles
	Public Key Cryptography - Elliptic Curve

	Ethereum Blockchain
	Ether & Gas
	Smart Contracts
	Bytecode & ABI
	Smart Contract Deployment
	ERC-20 Token Standard

	Decentralized Autonomous Organization (DAO)
	How do DAOs Work?
	Traditional Organizations VS. DAOs
	Decentralized Finance

	MakerDAO
	DAI Stablecoin
	Collateralized Loans
	MakerDAO Collateral Vaults
	Keepers
	Real-World Assets

	Chapter Design
	Overview of the Approach
	Architecture
	Working

	Chapter Implementation
	Implementation Details
	Implementation Results

	Chapter Conclusions & Future Work
	Future Work

	Bibliography
	Appendices

