Abstractions for Concurrent Consensus - Go

Implementation

Nithin Thomas

A Dissertation
Presented to the University of Dublin, Trinity College

in partial fulfilment of the requirements for the degree of

Master of Science in Computer Science (Future Networked

Systems)

Supervisor: Dr. Vasileios Koutavas

August 2022

Declaration

I, the undersigned, declare that this work has not previously been submitted as an
exercise for a degree at this, or any other University, and that unless otherwise stated, is

my own work.

Nithin Thomas

August 19, 2022

Permission to Lend and/or Copy

I, the undersigned, agree that Trinity College Library may lend or copy this thesis

upon request.

Nithin Thomas

August 19, 2022

Abstractions for Concurrent Consensus - Go

Implementation

Nithin Thomas, Master of Science in Computer Science

University of Dublin, Trinity College, 2022

Supervisor: Dr. Vasileios Koutavas

Consensus is a problem in any system using concurrency, such as systems distributed
over a network, multi-core machines, or single-core machines with multi threading. This
dissertation utilizes the theoretical foundations provided for abstractions of Concurrent
Communicating processes and proposes a library designed to support consensus among
communicating processes. The library is implemented in Go programming language,
which supports communication over channels and shared memory between threads. The
library is designed to provide an abstraction where a user can easily design the processes
while the library handles communication needed for the transactional nature of these
processes. The challenges and design approach of the library is discussed. Further, the
analysis of implementation is performed in terms of its correctness, performance and
usability.

Acknowledgments

I would like to extend my gratitude to my supervisor Dr. Vasileios Koutavas for his regular
feedback and support, making this dissertation an iterative process. His fresh perspective
and time spent on design discussions helped me learn new approaches and ideas. I thank
Dr. Andrew Butterfield for his feedback on the design and its analysis.

I would like to thank my parents and sister for their unconditional support. I thank

Anandu Pavanan for sharing his knowledge of Elixir programming language.

NITHIN THOMAS

University of Dublin, Trinity College
August 2022

v

Contents

1__Introductionl
(1.1 Background
(1.2 3 Way Rendezvous|

(1.4 Research Question|
(L. Structure of the Dissertationl

Background|

Approach & Design|

[3.1 Development Approach{.

3.2 Process Abstraction|.

3.3 Protocoll

3.4 Monitor

[3.5 Group Monitor|

[3.6 Overall Design|.

[3.7 Abstraction as a library|

Implementation|

5

(4.3 Group Monitor|

4.4 Challenges| o

M5 Guidelined oo

ANalysis,

(Bibliography|

A

10

14
14
14
15
16
17
18
19

21
21
24
26
28
31

34
34
35
38

41
42

42

44

45

List of Tables

[5.1 Number of groups created with respect to different combi-

nations of verifier and peer process counts|

List of Figures

[3.1 Logic flow of Monitor when a new Process is registered| . . . 17
[3.2 Logic flow of Group Monitor thread to monitor Process ex- |

ecutions 18
[3.3 Iree structure formed by the creation of goroutines| 19
[>.1 performance on creating concurrent processes for consensus |

without the library| 36
[5.2 performance using the library with no retry for processes| . . 36
5.3 log log analysis of implementation using library] 36
[>.4 execution time of implementation using library and pro- |

grammed aborts[. L 37

Chapter 1

Introduction

1.1 Background

Distributed applications aim to provide users with abstraction while the
complexities of the underlying system are hidden away. Such applications
replicate data across participants for the concern of availability. In such an
approach, consistency is a crucial aspect so that any data modification is
done on all of the replicas. The application, as a whole, should move from
one uniform state to another.

This problem of consensus between participants is common in Dis-
tributed Systems and dealt with in different ways according to the level
of consistency required[I]. A generalized way of achieving consensus is
provided by Paxos [7]. A set of state machines that can take up the roles
of proposer, acceptor, and learner communicate with each other. Each pro-
poser can propose a new value, which has to be accepted by the majority
of acceptors. This value is learned by all learners involved. In a practi-
cal implementation, usually, all processes involved play all three roles of
proposer, acceptor, and learner.

A more practical algorithm such as RAFT[8], demonstrates this through
a number of processes out of which one can be elected as a leader. A leader
acts as the proposer, all processes act as acceptors, and a majority of pro-
cesses have to accept a value for a commit. In either case, consistency is
ensured by making sure the majority of processes agree on a new proposed
value. A system of distributed processes can also aim for complete accep-
tance instead of a majority for stronger consistency. All implementations
thus require techniques to handle consensus problems.

Generally, there are two types of this problem, the consensus problem
and the interactive consensus problem[2]. In the consensus the problem, all
non-faulty processes that start with the same initial data should eventually
decide on the same final values. An example is the 3-way rendezvous al-
gorithm, where 3 concurrent processes, starting with the same initial state
should agree on the value of the next state. All processes involved will
transition to the new state, only if all of them converge to the same value

of the new state. The state can be a value of a data variable or the content
of a file. Omne of the three processes will be designated as a leader, and
others take up the role of followers. The leader will verify the new state
of followers, and if they do not converge, decide to roll back to the initial
state. This can be extended to an n-way rendezvous algorithm, to fit a
group of n processes.

In an interactive consensus problem, all non-faulty processes will agree
on data for individual processes. These processes may not converge on
the same data but will agree on the end state of all processes involved.
This is a more general version of the consensus problem. An example is
the Saturday Night Out(SNO) problem[3]. In such problems, all processes
involved would require some conditions to be satisfied by other concurrent
processes. These conditions may be regarding communication over the
network, writing to persistent storage, and so on. If one such process can
find concurrent processes that satisfy all the requirements, this group of
processes can move to a new state and commit. The groups formed here
can be dynamic and with a variable number of members.

In either case, the concurrent processes need to communicate with each
other to reach a consensus. The communication could be with a designated
leader, following a server-client behavior, or a peer-to-peer manner of com-
munication. In this context, communicating transactions construct [6] is
useful in ensuring consensus between processes, or rolling back if no con-
sensus is achieved. The All or Nothing property of transactions can ensure
a consistent transition between states. Communicating transactions can
also use programmable aborts, which are triggered by the process. These
may be triggered due to an external dependency specific to the process, or
due to disagreement with other processes.

The TCML language [3] gives abstractions for modeling such commu-
nicating processes, that are transactional. An interpreter was developed
using Concurrent Haskell, which creates threads and a Trie data structure
to maintain a global view of all processes. With the global view available,
a scheduler process will choose from available actions, such as commit or
abort, among processes. The actions of the processes will notify a gatherer
process, which will update the Trie global data. This can model consensus
problems similar to 3-way rendezvous and SNO scenarios can be modeled
using restarting processes.

The Elixir implementation [9] of this abstraction uses the actor model
and message passing provided within the Elixir language. It uses a protocol
structure to indicate how a group of processes in the consensus problem
be created from available processes. A global coordinator handles the cre-
ation of groups and creates local coordinators. The processes are modeled
into lightweight threads available in Elixir called process. The process has
isolated memory space and can communicate with other processes by asyn-
chronous messages.

1.2 3 Way Rendezvous

In a multi-party agreement scenario[4], a number of participants have to
come to an agreement regarding an operation and thereby a new state
of the system. They form groups and communicate among themselves to
exchange necessary information, for example, the result of the proposed
operation.

This is also considered to be a server-client model. In this paradigm,
the server provides services, while managing the exclusive access to a state,
effectively providing the effect of a locking mechanism. This ensures only
one client accesses server data at any time. However, it can be proven
that abstract implementations for n-way rendezvous using asynchronous
communication are impossible [5]. Hence synchronous communication is
the desired communication primitive for such abstraction.

In a 3-way Rendezvous protocol, one participant is designated as the
server. The server process is designated so when the group is created. The
server process and client processes are hence different. This asymmetry in
synchronous communication is not desirable in all cases in general. The
server can then communicate with other participants, and ensure that the
participants are in synchronization with each other and the leader itself.
If all participants are in agreement and ready to commit, the group can
agree and thus accept the new state or data. If any of them fail or propose
a different value, the group will roll back and each participant will revert
to an initial state.

The Go programming language(Golang) provides lightweight threads
called goroutines. However, synchronization is not straightforward in Golang
as the memory can be shared among such goroutines, and techniques in-
volving mutex and channels are used for communication. The goroutines
are also not assigned exclusively to an operating system thread. Golang
does not provide functionalities to explicitly kill a goroutine or to identify
any failure in one. Due to these reasons, implementing a protocol similar
to 3-way rendezvous would require the use of channels for communication
and mutexes for safe access to shared memory. However, as discussed,
this form of blocking, synchronous communication is not the best fit for
a general abstraction of this problem. But, Golang does not support the
message passing primitive which is a better choice for rendezvous problems
in general[5].

1.3 Motivation

A coroutine is a concurrent computation, that can be suspended. However,
a coroutine can be executed in different operating system threads. It can
be suspended from one operating system thread and resume in another.
Similar to Elixir, Golang enables the creation of lightweight threads.
Even though the concurrency model of Elixir and Golang is derived from

Communicating Sequential Processes(CSP), the lightweight threads -goroutines-
are not isolated. Goroutines help in the easy implementation of concurrency
by multiplexing coroutines while keeping the overhead to a few kilobytes.
They can communicate via shared memory or channels. This required use
of locking and mutex to avoid race conditions. Hence the communication
is synchronous and is a blocking operation. Golang achieves concurrency
by keeping active threads on a separate operating system thread.

The Haskell implementation of concurrent transactional processes uses a
Scheduler to choose actions from processes, which is done randomly. How-
ever, a defined Protocol given in the Elixir implementation can improve the
performance of the scheduler. This implementation relies on the isolation
provided by Elixir. In case of a faulty process, this means that the fault
will be ignored and will not affect other running processes. However, if
a process fails, while execution within a group, the isolation, and ignored
failure can lead to inconsistent states or for the members of the group to
wait indefinitely.

Due to the shared memory model of goroutines, failure of one gorou-
tine can halt the runtime. However, such failures can be identified using
recover construct available in Golang and used to signal a process failure
within a consensus scenario. This could also be useful in implementing
programmable aborts within processes.

Additionally, an analysis of performance in terms of commits or roll-
backs to the number of groups created for consensus scenarios is required.
This would be particularly helpful in identifying the overheads in creating
the groups out of available processes, and how a defined Protocol would
help improve the implementation in this regard.

1.4 Research Question

This dissertation proposes an implementation of abstractions for concur-
rent transactional processes discussed above. The Go programming lan-
guage(Golang) is used to implement these abstractions into a library. This
library provides easy abstractions for a user to create a group of concurrent
processes taking part in a consensus problem. The library provides func-
tionalities for communication between processes, and to implement aborts
within the process computation. The library also handles faults in pro-
cesses from external dependencies. The concurrency features provided by
goroutines are utilized in process computation, while channel construct in
Golang can be used for communication between processes. The perfor-
mance of the library can be analyzed against the number of concurrent
processes. The correctness and usability of this library can be investigated
by implementing particular scenarios.

1.5 Structure of the Dissertation

The following sections explain the background work which helped design
this library. Section 3 explains the approach followed for the development
of this library and the reasons for design decisions in creating these ab-
stractions. The abstractions and the enclosed functionalities are discussed.
Section 4 explains the implementation details of the library. The choice
of constructs available in Golang is explained. The major components
designed are discussed along with the overall computation logic. Some
challenges faced in creating some functionalities and the workarounds are
discussed. Few guidelines to avoid such challenges are listed. Section 5
analyses the library on its performance, correctness, and its usability. The
performance of the library is discussed in throughput and the behavior
when scaled up. Section 6 draws conclusions from the implementation and
its analysis and discusses areas of improvement, possible new features, and
future work.

Chapter 2

Background

Concurrent ML(CML) is introduced by John Reppy in [4] which supports
synchronous operations as first-class values. It provides responsiveness with
the preemptive scheduling of threads. CML uses synchronous message pass-
ing for communication between threads. Message passing provides a more
robust model than using shared memory for communication. synchronous
communication is better suited for detecting errors and enables threads to
share information quicker.

Various synchronization and communication methods are discussed in
the design choices of CML. While shared memory can be used for commu-
nication between threads, it brings in the complexities of access to shared
values. As a solution, a locking mechanism has to be introduced. For this
reason, as well as for better abstraction, message passing is considered to
be a better approach in CML. In message passing, the abstraction can be
the same for threads on a single processor and threads running on different
machines on a network. The same cannot be the case for shared memory
abstraction. Similarly, the design chooses synchronous communication over
asynchronous mode.

To accommodate selective communication using synchronous commu-
nication, as well as provide a necessary abstraction for communication over
the channels, CML introduces event to represent an abstract communica-
tion protocol. CML also extends the message passing communication to
include a negative acknowledgment. This ensures the threads communicate
about failures too, which is useful in terms of a transaction.

The implementation detail of using CML for terminal-based applica-
tions where concurrency is achieved through a single processor or par-
allelism achieved by different terminals on a network is discussed. The
capability of CML in designing an interactive window application is also
discussed, where threads handle different aspects of the application to en-
able responsiveness with the graphical interface.

In [10] Transactor programming model is introduced to design dis-
tributed components. The model is based on the actor programming model
and focuses on the durability aspect of transactions. The components com-
municate via message passing, and the model can work in an unreliable

10

environment with component failures, network failures , and dropped mes-
sages. The model involves a construct called a transactor which can create
checkpoints and roll back to a previous checkpoint if needed. A transactor
can be dependent on other transactors, and hence model the dependency
within a multi-component distributed system. A transactor will be able
to send asynchronous messages to others and hold information about its
dependencies.

A transactor holds a state and provides facilities to update it through
messages. The state is volatile, but a checkpoint can be created which is
persistent. A checkpoint can be created only if all the dependent trans-
actors hold valid states. This helps in creating a distributed checkpoint,
where all components are in consistent, persistent states. In case of fail-
ures after a checkpoint, the transactors can roll back to this persistent
checkpoint.

The transactors also hold transitive dependencies and the history of
states for them. A transactor moves to a stabilized state before creating
a checkpoint. Stabilized state is volatile still, where the transactor still
processes messages but does not modify its state. When all dependencies
are in agreement, the transactor can checkpoint its state, thus creating a
new persistent history.

In [11] an abstraction called stabilizers are introduced to CML for creat-
ing checkpoints in CML. This aims at dealing with temporary faults within
distributed and concurrent systems where the action of rolling back has to
consider the previous global checkpoint. This is also necessary to avoid
an inconsistent global state. Due to the concurrent nature of components,
performing a set of local operations after a failure does not guarantee a
consistent state of the larger system.

The Stabilizer is created using a stable section in the code which is
monitored and is handled to be atomic. In the event of a revert, the
program reverts to the state before the stable section. A stabilize method
when used reverts the state of the program, which was immediately before
the stable section. A stabilizer also includes a cut primitive, which defines
a point in the program before which it cannot revert to.

The checkpoints are captured only at the entry into a stable section. A
stable section can be dependent on other stable sections through commu-
nication. In this case, if the stable section reverts, the dependent stable
section has to revert as well. The dependencies are tracked using a com-
munication graph. To revert actions of a thread, the value of references is
also maintained. For the need for reverting, the initial value of a variable
is stored. For subsequent changes, a version list is stored for reference and
the value of data. This also considers the use of locks for variable access.
The order of locking and unlocking by threads are kept track of for the
need for stabilization.

Communicating, non-isolated transactions are introduced in TransCCS[6],
where transactions can coordinate to create a distributed checkpoint. All

11

transactions involved have to commit before creating a checkpoint. The
transactions communicate state information and their environment. In the
event of a rollback, the transactions involved do not have to revert all
changes, but instead, roll back to the last checkpoint created among them.

A transaction can be embedded into another, modeling the commu-
nication between them. This also enables the composition of distributed
transactions consisting of several such transactions. TransCCS also intro-
duces programmable abort language primitive, where a deterministic abort
is caused by a transaction through its computation logic.

Abstractions are introduced in [3] through TCML, which can imple-
ment generic and interactive cases of consensus problems such as SNO.
Processes communicate over channels, and a communicating transaction is
represented in terms of the process P and P’ which is the process to be exe-
cuted if P aborts. It also provides primitives to create a channel within the
scope of a transaction, as well as to send and receive data through chan-
nels. It also defines rules to embed a communicating transaction within
another. This deals with the ordering of processes in the event of an abort
in embedded transactions.

Further rules are defined to mark a transaction as atomic and commit
primitive is provided to mark a communicating transaction commit. In the
case of an embedded transaction, the innermost transaction has to commit
for the outer transaction to be able to do the same. This ensures that
all transactions involved in the communication have to agree to commit
for the whole transaction to do so. The aborts are non-deterministic and
transactions can be restarted for implementing scenarios such as SNO.

An implementation architecture is also introduced which holds all trans-
action information in the form of a Trie data structure. Any side effect
creates a notification and is sent to a component called gatherer. The main
thread is a Scheduler. Each process has a local transaction state. The
Scheduler will send messages to threads to update their local state. The
update creates an acknowledgment that is sent to the gatherer. This helps
keep the Trie data containing the global view updated.

Various approaches are followed in designing a scheduler. The basic ap-
proach is a random scheduler which selects random operations from avail-
able processes. A staged scheduler selects actions according to a priority.
A commit will be chosen over an abort or embed. A communication-driven
scheduler will embed processes only if they are to communicate with each
other. A delayed aborts scheduler will abort a process only if there is no
non-sequential operation for a specific time. The analysis shows the ran-
dom scheduler performed worse by an order of magnitude. All schedulers
deteriorate exponentially with a scaling number of processes.

Work by Reppy on CML provides design approaches and arguments for
synchronous communication between threads and demonstrates how the
communicating threads can be used to achieve concurrency and parallelism.
Stabilizers are introduced on CML to enable transactional properties of

12

threads by creating a monitored section and global checkpoints. The work
by Koutavas et al [3] introduces communicating transactions that can be
used to model consensus scenarios similar to SNO or n-way rendezvous.
This can be achieved by primitives provided for embedding, committing
and creating, and using channels for communication. These lay theoretical
foundations for communicating transactions without providing an effective
method that they can be implemented.

The implementation of these primitives in the Go programming lan-
guage poses a further challenge due to the shared memory model of Go.
Communications are primarily through channels, and shared memory is
used to communicate with the help of a locking mechanism. As the theo-
retical primitives mostly rely on message passing and actor programming
model, a direct and simple implementation into Go is not entirely achiev-
able.

13

Chapter 3

Approach & Design

3.1 Development Approach

The development of this library was completed by following an iterative
software development approach. Regular discussions and correctness checks
helped in creating the core functionalities and set direction for features to
make it more seamless. The initial phase of development was focused on
creating a complete working program in Golang that demonstrates the
concurrent execution of goroutines and implements a correct consensus
mechanism among them through communication via channels.

Following the initial implementation of the complete program, the ap-
proach was to separate the functionalities to be offered specifically by the
library. This involved deciding the level of flexibility offered for a user while
implementing a process and what fixed functionalities would be provided
by the library. With the separation of library functionalities, the approach
for giving the users to run their generic implementation of a process was
discussed. Golang supports Generic data types since version 1.18 which was
introduced in March of 2022. But as the development of this library was
ongoing since November of 2021, the design approach used other techniques
to allow generic process logic, which is discussed in section 4.

3.2 Process Abstraction

As Golang does not support isolated processes and message passing, the
design of this library embraces the motto of Golang, ”share memory by
communicating”. In this approach, any data to be shared between gor-
outines is passed around through channels. A goroutine is then designed
to accept a memory reference to data, perform computation with it, and
send it out of the goroutine using another channel. This approach of mem-
ory sharing helps design concurrent goroutines, while ensuring that data is
accessed by only one goroutine at any given time.

By design, a goroutine can be only controlled by the program logic
within that goroutine. Considering this, a communicating process(Process)

14

is designed to be a Golang object. References to this Pocess objects are
used to handle grouping and monitoring completion. The Process object
will also contain necessary data for the execution of a goroutine, which
will execute the Process logic implemented by the user. This is useful in
explicitly executing the process only after it is grouped for the consensus
problem. Since the Process is handled as a reference to the object, the
library can insert group-specific data into Process when required. This can
include information about peer processes, as well as the designated role of
the process in the created group. The Process object should also provide
functionalities for communication within groups, as well as to signal aborts
from within the Process logic implementation.

Complete execution of Process logic should indicate its readiness to
commit. A commit operation will not involve any more computation to
avoid the possibility of failure after the Process is ready to commit. How-
ever, any fault within Process function logic or a programmed abort should
indicate a failure in consensus. At this point, the operations performed by
the Process have to be reverted and the data state has to be reverted to
the previous, consistent state. For this reason, the Process object will also
hold a rollback function, which cleans up the effect of Process operations
in case of a rollback.

In any consensus scenario, communication between processes is neces-
sary. To facilitate this, the library provides functionalities for a Process to
identify its peers and their roles in the group. The library also provides
functionalities for a Process to send data to another, using an Inbox chan-
nel for each Process. This is designed to be of generic data type and can
be used by processes to even define new channels and bootstrap for further
communication.

Processes

{
Roles(Possible roles to play in a group)
Role(selected role to play in the group)
Function
Rollback Function
Inbox(channel)

3.3 Protocol

A Protocol can be useful in defining how a group involved in the consensus
problem will be created. The design of Protocol considers the possibility
of a process that can play different roles in a group. Such a Process can
provide a list of different roles it can play in the group. However, it is
up to the library to choose the role the process will play. The library will

15

follow a greedy approach in this case, such that a process will be assigned
a role from its list of roles, which will help in creating a group and starting
Process execution. For this reason, the Protocol will also need to rank the
priority of possible roles. Consider a group is to be created for a 3-way
rendezvous problem, where a Process will be wverifier and two Processes
will play the role of client. The verifier will receive new values from clients,
and if any of them are different from the new value proposed by the verifier,
the group should roll back. The Protocol for this group could be:

Protocol

{
roles —> (verifier: 1), (client: 2)
priority -> verifier, client

This explains what roles, and how many of each role are required to build a
group. The priority helps the library with its greedy approach to creating
groups. If a Process can be a verifier as well as a client, the library will
impose the role of verifier on the Process.

3.4 Monitor

A Monitor is the process (Fig. that will keep the pool of all available
processes, and their roles, and will be responsible for the creation of groups.
Every new Process created will be registered with the Monitor. A process
will be created with a selection of roles it can perform. The monitor will
hold a pool of all available processes. When the Processes get registered
to the Monitor, it can check the pool and with the use of Protocol, check
if there are enough available participants for creating a group. If there are
enough processes with the appropriate roles available, Monitor can create a
Group Monitor. A Group Monitor can be executed in a separate goroutine,
which can handle the consensus within the group.

Monitor
{
protocol;
available processes: <List of Process>

When the group is created, the new goroutine specific to the group
runs concurrently, and the involved processes are removed from the list in
Monitor. These can be put into the Monitor again in case of an abort
or rollback. This can be useful in problems similar to SNO. The Monitor
will wait for all the groups to complete execution, which involves either a
commit decision or a rollback decision. The only functionality of Monitor
is to group processes and hand the grouped processes to a new goroutine.

16

" S
Register check using protocol
~HIOCESS Add to process list if processes available :er-llaee::tfegmfoi;:;l?s
to create group i
............................

i S B R L i start group monitor
o o goroutine

L & i
List of available

Protocol
processes remove processes

from process list
 —

Figure 3.1: Logic flow of Monitor when a new Process is registered

3.5 Group Monitor

A Group Monitor is the component in the library that handles the exe-
cution of a group and checks for consensus. As Monitor creates a Group
Monitor, the list of processes in that group is embedded into it. Hence,
a Group Monitor can begin by setting up means for communication be-
tween these processes, as well as ways for each Process to signal readiness
to commit or abort.

Group

{
processes (as part of the group)
completion Channel (to listen for completion messages)
fault Channel (to listen for failures or abort messages)

Since each Process object consists of the Process logic, as well as any
data parameters needed for execution, the Group Monitor (Fig. can
start Process computation on a new goroutine. After setting up common
channels, the Group Monitor will start a goroutine for each Process within
the group. The Group Monitor would then listen for messages from each
Process goroutine. These messages will signal either a readiness to commit,
or a fault. If all Processes signal readiness to commit, the Group Moni-
tor will broadcast a commit message to all Processes in the group. This
should complete the execution of all Process goroutines, and no further
computation should be carried out in these goroutines.

If any of the Processes involved in the group sends an abort message, the
Group Monitor will broadcast a rollback message to all Process goroutines
involved. The Process goroutines will halt after execution of the rollback
function which is part of the Process object. If the group arrives at a
consensus and commits to the new value, the Group Monitor goroutine
can end its execution. If the group aborts and reverts to the previous
value, the Group Monitor will send the Process objects involved back to

17

the Monitor goroutine. This will help in restarting a Process if needed and
creating a new group for consensus, thus starting a new Group Monitor
goroutine.

i Ty
create common
channels for process

communication
e A

v

' "y
insert commaon
channels into process

objects
L -

v

(" for each process in)
group, execute
process function in a
. gorouting g

(" listen for "ready to)
commit" or “abort”
signals from the
_process goroutines)

i all ready th

e ;
commit

Mo

h 4

broadcast commit broadcast rollback
message to all message to all
processes processes

Figure 3.2: Logic flow of Group Monitor thread to monitor Process execu-
tions

3.6 Overall Design

The library groups and executed the processes, and follows a nested ap-
proach on goroutine invocation. This creates a tree pattern (Fig. of
goroutine creation, where each node represents a running goroutine and all
children of a node are goroutines created by the parent node. Each node
waits for the completion of all children nodes. The Monitor goroutine is
the root of this tree, which holds all available Processes, and the Protocol
to follow in creating groups. It creates groups and starts Group Monitor
goroutines when enough Processes are available to fit the Protocol. Each
Group Monitor goroutine will setup up necessary channels and create a
goroutine for each of the processes in the group.

18

This hierarchy, however, does not mean an implicit monitoring effect.
If a goroutine fails, the failure is not communicated to the parent gorou-
tine. By design, Golang does not have a parent-child relationship between
goroutines. However, completion of a goroutine can be monitored by a
channel, which is, however, a blocking operation. In the structure to be
designed, the Group Monitor goroutines need to know failure and aborts
within Process goroutines. To achieve this failures have to be detected
within these goroutines and use channels to signal it. The implementation
detail of this technique is discussed in section 4.

Monitor

¥

Group Monitor Group Monitor Group Monitor | sesesencenaaas Group Monitor

‘ Process

‘ Process

‘ Process

AAAAAAAAAAAAAAAAAAAAAAAA ‘ Process

‘ Process

‘ Process

Figure 3.3: Tree structure formed by the creation of goroutines

The Monitor goroutine does not depend on the failure or success of the
goroutines it created. The Group Monitor goroutine has to handle failures
and arrive at either a commit decision or rollback decision. However, the
Monitor goroutine requires completion of all groups created. For this rea-
son, the goroutine has to wait for all children to complete execution. This
is achieved by using a counter of all actively running Group Monitors. The
WaitGroup feature of Golang is used to implement this and the details are
discussed in section 4.

3.7 Abstraction as a library

The library designed here hides the complexities of creating a group, and
communication within a group from a user. Any failure within processes,
as well as the consensus result, is handled by the Group Monitor, which is
completely decoupled from user code. The user has to define Protocols and
create a Monitor using any of these Protocols. The user is also required
to create a function that holds the execution logic of Process, as well as a
Rollback function which will clean up the effects of Process operations in
case of a rollback decision.

After the creation of the Monitor goroutine, the user is only required
to create Processes with appropriate roles according to the Protocol, and

19

register them with the Monitor. While registering these Processes, any
parameters required for the execution of the Process function also have to
be passed on to the Monitor. After the processes are registered, the user
only has to wait for Monitor execution to complete. This happens when
all groups created from Monitor finish execution.

If utilizing the library, the user is hence only concerned about the com-
putation logic of each process within a consensus problem, conditions for
successful completion , and conditions to program aborts. The overhead of
grouping, synchronization for commits, or rollbacks is hidden away. The
library provides additional functionalities for a user to have their processes
communicate within a group. The grouping of processes is dynamic using
the library. To an extent, it depends on the order in which Processes are
registered with the Monitor. But if processes are restarted, this cannot be
the right assumption, as the Monitor works on a greedy approach and any
available Processes can be grouped.

20

Chapter 4

Implementation

4.1 Process

The Process is the object which encapsulates all necessary information
required to execute one process and information about peers and channels
to communicate with them. The Process structure created in Golang is as
below:

type Process struct {
Roles map[string]bool
Role string

function interface{}
cleanup interface{}
args [Jreflect.Value

peers map [*Process]bool
Inbox chan (Message)

errorChan chan (int)
successChan chan (int)
commitChan chan (int)

ExecCount int
GroupNum int
Ctx context.Context

The Roles attribute holds all the possible roles the Process object can
play in a group. this is useful for the monitor while creating a group. The
Role attribute is the actual role the Process will play in the group. This
is modified in the Process object by the Monitor, only after the group is
created and the role of the Process is confirmed. If the process is restarted,
the Monitor will group it again, and edit the Role attribute as needed.

21

For the use of this library to create processes, a process function has
to be created in Golang along with a cleanup function which would be
executed if the group of processes decides to roll back. Any arguments
required for the execution of these processes have to be registered with
Monitor. To keep these attributes generic, Reflection can be used. Re-
flection refers to the capability of a program to analyze its structure. In
Golang, using Reflection[13], the raw value of a variable and its type can
be examined. This capability is used here to save the arguments as raw
values of type reflect. Value.

Interfaces are used in Golang for composability. Interfaces ensure that
an object behaves in a particular way. This is achieved by defining function
signatures in an interface. If an object defines methods with these function
signatures, it implements the interface. In Golang, interfaces can be used
for function parameters, and any object that implements a certain interface
can be used with the function. In such cases, an empty interface would
mean there are no necessary methods to be implemented in an object.
So any object can take the place of an empty interface. Here, an empty
interface is used to store the process function and the cleanup function.
When the function has to be executed, the reflection capability of Golang
is used and the value of arguments provided while the process was registered
as :

reflect.ValueOf (p.function) .Call(p.args)

The peers attribute of the Process object stores a set of all peer objects
in the group it belongs to. As Golang does not have an inbuilt set data
type the map data type is used, where keys are the memory address to the
project object, and the value is always True. This data will be added to the
Process object by the Group Monitor goroutine, while it sets up common
channels before starting the execution of each process. The Inbor channel
will be created in the Process object. This can be used by processes to send
messages to peers. The channel is of type Message, which is a structure
defined within the library to enable data of any kind. Message is essentially
a map data type, with keys to be of type string, and the values can be any
type, which is again achieved by an empty interface:

type Message map[string]interface{}

This helps the user to exchange information between peers of any type.
Another channel could be exchanged too, as a way to bootstrap specific
communication between peers.

The channels, errorChan, successChan, commitChan are created by
Group Monitor and injected into the Process object. Process can use sig-

22

nal an abort through errorChan, and readiness to commit through success-
Chan. The commitchan is for the Group Monitor to broadcast the commit
signal to all processes involved in the group. The Process object provides
methods for a user of the library to signal failure or readiness to commit.

The EzxecCount in Process keeps track of how many times the Process
has been tried to be executed. The protocol defined for Monitor includes
a maximum retry count. This helps in avoiding retrying a process forever.
The Monitor can check the execution count of Process and if it’s above
the threshold, choose not to start it again. The Group number is modified
when a Process is put into a group. It is useful in logging and analyzing
how many and which groups the Process was put into.

The Context type is defined in context package [12]. Tt is used to stop
unnecessary goroutines and has an associated cancellation signal. Context
is created and carried by the goroutines. While the goroutines cannot be
killed from the outside, the goroutine can be designed in a way to check if
the context is still active. Goroutines can check the status and decide to
stop if the context is inactive. A cancellation signal is received through an
associated Done channel of context. The select construct can be used to
design goroutines to check context as :

go func{
select {
case <- ctx.Done(): // context was canceled
// and a signal is
// received
return
case intData <- integerChannel:
// use intData to perform computation
}
}(ctx context.Context)

When any process in a group aborts, the Group Monitor cancels the
shared context. This can be used to stop the computation of other pro-
cesses. The library does not implicitly kill the processes, but the user has
to design process functions to check the cancellation of context. While the
user is free to implement the process function logic in any way, the process
function should follow a specific signature to use the Process methods, and
if needed check the context of the group to ensure active context. The
process function and cleanup function should use the following signature:

//func(p *1ib.Process, /* arguments*/)
//eg:

23

func(p *1ib.Process, num *int, name *string){

//checking context

select {
case 1 <- numChannel:
if i==0{
p.Fail("received 0")
//using Process method to signal
//failure or program abort
}
case <-p.Ctx.Done():
return

// as context is killed
// signal received on Done channel
// stops goroutine

4.2 Monitor

The monitor is the object that handles all the available processes, groups
them with a defined grouping Protocol, and starts the execution of Group
Monitor goroutine for each of these groups. The Monitor structure is de-
signed as:

type Monitor struct {

counter int

protocol Protocol

state map [int] *Group
processChan chan *Process
retryChan chan *Process
newProcessChan chan *Process
wg *sync.WaitGroup

The counter attribute keeps track of how many groups were created by
the Monitor. This is also used in assigning an identifier to the group when
its created. The state attribute holds references to all groups created. It is
a map with the group identifier as the key and the memory address of the
Group object as value. The protocol attribute holds the grouping protocol
the Monitor has to follow. It is implemented as :

24

type Protocol struct {
roles map [string]uint
priority [Istring
maxRetry uint

The roles attribute defines the possible roles accepted in the group. Any
process to be put into the group should be playing one of these roles.
the priority attribute of Protocol helps the Monitor to follow its greedy
approach in the grouping. If a process is available, which can play multiple
roles, the Monitor assigns a role to the process according to this priority
defined in the Protocol. The mazRetry attribute is used while restarting
processes. If Monitor has a process available, whose execution count is
above maxRetry in the Protocol, the process is not executed again. This
avoids infinite retries for a faulty process.

After the Monitor is created with the required Protocol, the Monitor
can be started with the Start method. New processes can be registered
with the Monitor after its started, using the RegisterProcess method. It
requires the roles the process can play in the group, the process function,
the rollback function and any arguments for process function.

RegisterProcess(role map[stringlbool,
f interface{},
¢ interface{},
args ...interface{})

The Monitor has to be started as a goroutine, and it listens on a New-
ProcessChan channel to accept a new process object, and add it to its
list of available processes. Internally, the Monitor goroutine starts an-
other goroutine, named ProcessHandler that will listen for new processes
in NewProcessChan channel as well as retryChan channel. All groups that
rollback will send the involved processes to Monitor through retryChan
channel. These also have to be added to the list of available channels, if
they have not been executed more times than specified by the maximum
retry count.

To work with both channels, the select construct is used in ProcessHan-
dler, which listens to both NewProcessChan and retryChan. A fan in design
is then created with the processChan channel so that all processes coming
in from either channel are sent to processChan channel. The Monitor gor-
outine listens for processes on the processChan channel.

func (m *Monitor) Start() {
//starting process handler goroutine
go m.ProcessHandler ()

25

//listening on processChan

p := <- monitor.processChan
}
ProcessHandler () {
for{
//listens on NewProcessChan
// and retryChan
// sends any incoming to processChan
select{
case p := <-m.newProcessChan:
//sends to processChan
monitor.processChan <- p
case p := <- monitor.retryChan:
monitor.processChan <- p
}
}
}

4.3 Group Monitor

The Group object holds information about processes involved in a group
and common channels required for communication with them.

type Group struct {
Gid int
processes map[*Process]bool

errorChan chan (int)
successChan chan (int)
commitChan chan (int)

The group is identified by Gid which is given while creation by the Moni-
tor. The processes are a set of processes that belong to the group. These
processes are provided by Monitor and removed from its set of available
processes.

A Waitgroup is part of the sync package in Golang. It enables the
program to wait for a group of goroutines to finish. The Waitgroup is
initialized, and for every goroutine to start execution, Waitgroup is incre-
mented. the goroutine will take the Waitgroup as an argument or shared

26

data, and on completion of its computation, the Done method is used to
decrement the Waitgroup.

Once the Group is created, the Group Monitor goroutine is executed by
the Monitor. This goroutine also takes a Waitgroup created at the Monitor.
This keeps track of all running Group Monitor goroutines. Thus Monitor
waits for all Group Monitor goroutines to stop its execution. In the Group
Monitor, the channels for communication with processes are created. The
errorChan and successChan channels are created for processes to indicate
failure and readiness to commit respectively. The commitChan channel is
created for Group to signal processes to commit. All these channels are
created and injected into Process objects while creating the Group.

The Group Monitor also creates a context to be shared by all member
processes and injects this context into them, before the execution of process
functions. When a process aborts, the Group Monitor receives this infor-
mation through errorChan channel. In such an event, the Group Monitor
will cancel this shared context, which will signal other processes to stop
execution.

Every Group Monitor also creates a Waitgroup in its scope and incre-
ments it for each process goroutine it invokes. This is used to have the
Group Monitor wait for all processes to stop execution. On finishing exe-
cution, all processes will decrement the WaitGroup. The Group Monitor
goroutine is designed to be short and only communicates with processes
over channels. This is done to avoid failures from the group monitor itself.
It will only listen for signals from processes, and send a commit or roll back
broadcast to processes. Each process goroutine can recover from a runtime
panic. This will be signaled to Group Monitor and handled.

GroupMonitor(wg *sync.WaitGroup, retryChan chan *Process) {
defer func(){
//decrementing Waitgroup
//from Monitor after execution
wg.Done ()

10

//creating Waitgroup
//to track process execution
groupWG := sync.WaitGroup{}

//creating shared context
ctx, cancel := context.WithCancel(context.Background())
for p := range g.processes {
p.InsertContext (ctx)
}

//executing all processes
for p := range g.processes {

27

groupWG.Add (1)
go p.Exec(&groupWG, ctx)

Once the process executions are started the Group Monitor listens for sig-
nals from processes. It would either wait for all processes to indicate readi-
ness to commit or for one process to signal a failure. On receiving a failure,
Group Monitor cancels the shared context. A broadcast is implemented
through channels by closing the channels. When a channel is closed, a
message is received to any goroutine reading from the channel.

GroupMonitor(wg *sync.WaitGroup,
retryChan chan *Process)

{
select{

//cancel context on receiving

//failure signal

case <- group.errorChan:
cancel ()

case <- group.successChan:
completionCount += 1
//broadcast commit signal if all
// processes complete
if completionCount == len(group.processes){

close(group.commitChan)

¥

4.4 Challenges

Signalling Abort

The primary challenge faced was to identify a failure or programmed abort
from a process. Goroutines cannot be monitored as in an actor model of a
program. The shared memory of Golang instead has to use channels and
explicit steps to send a failure status. In the initial phases of this disserta-
tion where the programs were designed to model transactional behavior of
processes, channels were used extensively for this purpose. However, when
the functionalities of the library are separated, and the user has to be of-
fered flexibility in designing the process, the approach had to be modified.

28

The defer functionality of Golang enables you to set a block of code
to be executed at the end of a function. This happens even if there is a
panic(failure) in the function. The built-in recover function enables the
identification of panic in a function when used within a defer block. In
the updated approach, the user is free to design a process function as they
need. The process function is executed within a wrapper function, which
has a defer statement to identify any failures. This could be a runtime
failure or a programmed abort. In either case, the group is set to roll back.

func (p *Process) Exec(
groupWG *sync.WaitGroup,
ctx context.Context) {
defer groupWG.Done()
//setting execution count of process
p.ExecCount += 1

//wrapper function

funcO{
defer func() {
if r := recover(); r != nil {
//sending failure to group Monitor
//through shared group channel
p.errorChan <- 1
} else {
p.successChan <- 1
}
+O

//execution of user defined process function
reflect.ValueOf (p.function).Call(p.args)
0

//waiting for commit or rollback
// signal from group monitor
//after process function execution
select{
case <- p.commitChan:
//commit - no further action
case <- p.Ctx.Done():
// context was killed
// indicating roll back
// execute rollback/ cleanup function to
// cleanup changes from process function
reflect.ValueOf (p.cleanup) .Call(p.args)

29

Controlling Goroutines

The Group Monitor starts a goroutine for each process, and if it receives
an abort from any of them, other processes have to be stopped. Situations
where a process might wait for a long period for an external dependency,
such as a network request, are possible. In such cases, it’s better to kill the
group of processes when at least one abort message is received. However,
the goroutines cannot be killed from outside its scope.

To achieve this, the context package in Golang is used. This helps
the user check for a shared context, and continue operations in process
functions only if the context is active. This solution needs mindful design
from the user and does not kill a goroutine. Instead, the goroutine logic
actively checks for the validity of context.

Race conditions

The library spawns several goroutines to support the collective execution of
process functions. To maintain the groups and the available processes, the
data has to be maintained between the Monitor and Group Monitors. In
the initial implementations, this caused issues of race conditions, as both
Monitor as well as Group Monitor tried to access data about the same set
of Processes. However, the use of mutex for read and write access to this
data solves the issue. But as this is a blocking operation.

To avoid the blocking operation, and thus avoid any waits in these
goroutines, the subsequent implementations separated the data as needed
by each goroutine. In this design, the Monitor only keeps information
required for all available Processes. When a group is created, and the
Group Monitor goroutine has to be spawned, the Processes belonging to
this group are removed from the set of available ones. On the other side,
Group Monitor will only have to handle data regarding these particular
Processes in its Group. This separation avoids the need for a mutex.

Deadlocks

As the process goroutines require communication with each other for reach-
ing an agreement, the library provides a method to use peer information
and send data of type Message as defined in the library. This also enables
the user to send channels over the provided channel and bootstrap further
communication. However, the channel communications are blocking oper-
ations. While using an unbuffered channel, a sender waits for an active
recipient, or the recipient waits for a message to come through. This leads
to situations where all goroutines are waiting for data from the channel, or
all of them are trying to send data in the channel. Either case leads to a
deadlock.

30

This is more relevant in the case of rollback in a group. If one process
failed or signaled an abort, and the goroutine has completed its execution,
the other peers may end up waiting to receive something from the partic-
ular process, or send information to the process. But as the process has
already completed execution, the peers will end up waiting, thus creating
a deadlock.

This is solved by using the shared context, and canceling context when
a rollback has to be performed. This also requires the user to check if
the context is active within the process function. This helps in avoiding
deadlock where a process is waiting for data from a peer through a channel.
When a process is completed, the channels within the process function will
be dead, and the process Inbox the channel will be killed. In Golang, trying
to send data on a closed channel causes failure. This is useful in avoiding
deadlock, as the failure will only signal a rollback to the group.

4.5 Guidelines

The library is implemented to enable consensus through the shared memory
model and functionalities provided by Golang. While it lets the user design
process functions for their use case, the following are some guidelines to use
the library and to avoid running into deadlocks.

Structure and arguments of Process function

The Process object contains methods to use in Process function, such as
for sending a Message to peers, or signaling abort. To use these methods,
the Process function should be able to access the Process it is part of. To
enable this, the process function should expect a pointer to a Process as the
first argument. When RegisterProcess is used, a Process object is created,
and the process function becomes part of it. The cleanup function works
similarly. The signature of these functions should be as :

//Process function and cleanup function
//func(p *1ib.Process, /*additional arguments*/)
//eg:
processFunction = func(p *1lib.Process,

value *string,

result *string){}

processRollback = func(p *1ib.Process,
value *string,

result *string){}

It is also important that the arguments used in both process function
as well as its cleanup function are same. The RegisterProcess function is
used as :

31

monitor.RegisterProcess(
roles,
processFunction,
processRollback,
&valueString,
&resultString,

The process function will be invoked with the arguments provided in
RegisterProcess, and if the process has to roll back, the corresponding
cleanup function will also be invoked with the same arguments.

A suggestion to achieve transactional nature in these processes is to
use pointers as arguments to process function. The process function could
write data to the memory pointed in the course of its operation. If the
group rolls back, the cleanup would involve clearing the pointer. This can
be easily achieved by setting the argument to a null pointer in the rollback
function.

processFunction = func(p *1ib.Process, result *string)

{

//communicate with peers
//reach agreement on result
result = &aStringVariable

processRollback = func(p *1ib.Process, result *string)
{

//clear the pointer

result = nil

Avoiding Deadlocks

As discussed in the previous section, the context package is used to control
and stop goroutines if the group fails to commit. When a Process function
is designed, the user can choose to create new channels and communicate
over them. To avoid deadlocks its safer to use the Inbox channel provided
by the library, and the associated methods, while using Message type to
communicate. However, if a user creates new channels, the usage should be
combined with context checks. If a peer has failed, the process waiting for
data over such a channel will lead to deadlock. The context is inserted into
the Process and can be accessed by the *lib. Process argument of process
function. The Done function associated with the context should be used
to verify the aliveness of the context.

32

func(p *1ib.Process, result *string){
//channel intChannel created by the user
select{
case intValue <- intChannel:

case <- p.Ctx.Done():
return

by

33

Chapter 5

Analysis

5.1 Correctness

The analysis for the correctness of this implementation checks if the library
can group the processes correctly according to a protocol. Further, the
behavior of the processes is checked to ensure the commits are done only
when all processes agree, and if not they roll back. For this analysis, the
library is used to create a simple consensus scenario where three processes
exchange values. The protocol defines an asymmetric group where one
process is a wverifier, and two processes are labeled peer. To verify the
grouping behavior, a certain number of processes can be registered with
the Monitor, and check how many groups were created from the available
processes. In the protocol defined here, a group needs one verifier and two
peers. To avoid regrouping when a group rolls back, the retry count on the
protocol is set to zero.

The verifier process generates a random number. A probabilistic abort
is introduced by generating this random number in the range [0-100) and
aborting if the number is less than the imposed probability of failure. In
case of no failure, the number is sent to peer processes. Each peer pro-
cess receives the number and ends its execution. The designed scenario
is executed with different numbers of verifiers and peers registered to the
Monitor. Combinations, where excess processes are present, are also used.
Following are the observations from different executions:

As observed in [5.1] the number of groups formed in each combination is
according to the availability of processes and obeying the protocol defined.
the excess processes are not executed at all as they are never put into a
group. The protocol defined here does not retry execution on abort, but
if it had the number of groups would be higher. The commit counts also
show how many groups were able to commit while a certain percentage
of abort was introduced. The abort is probabilistic and introduced using
random number generation.

34

Table 5.1: Number of groups created with respect to different combinations
of verifier and peer process counts

verifiers | # peers | groups | abort % | commits
) 5 2 20 2
5 10 5 20 3
10 10 5 20 4
10 15 7 20 7
10 15 7 50)
10 20 10 20 9
10 20 10 50)

5.2 Performance

The consensus scenario defined earlier for the correctness check is further
used in the analysis for performance. To analyze performance, the Monitor
is started with the defined protocol, and several verifier and peer processes
are registered with the Monitor to create a certain number of groups. The
time required for the Monitor to group all processes and wait for the com-
pletion of all groups is noted. This information is also extrapolated to
calculate commits per second. Here the Processes are registered in num-
bers convenient for Monitor to group according to the Protocol defined.
That is, for every verifier process registered, two peer processes are regis-
tered with the Monitor. The growth of execution time to the increasing
number of processes and thus the increasing number of groups are analyzed
to study the scalability of the implementation.

These readings were obtained by execution on a Lenovo ThinkPad
E14 Notebook with 16GB RAM(SODIMM DDR4 Synchronous 2667 MHz
(0.4 ns)) and Intel i5 Processor (Intel(R) Core(TM) i5-10210U CPU @
1.60GHz), running Ubuntu 20.04.2. the implementation is made using Go
version 1.13.8. Five executions were carried out per combination and the
average value is used for analysis.

Figure [5.1| shows the execution time, where the processes are grouped
statically, without using the library. In this design, each group is started as
a group of goroutines, and channels are used to monitor readiness to com-
mit. Figure shows the execution times for the same consensus scenario
but implemented using the Go library. As observed, there is a significant
difference in execution time. The static implementation completed the
execution in less than 200 microseconds for 20 groups, while the imple-
mentation with this library required nearly 1 millisecond for completion.
This difference is due to the setup of Monitor, channels, and additional
goroutines for each group. The communication between these goroutines
is synchronous and blocking operation.

While the static implementation is faster, it has to be done on a case-

35

without library, fixed groups

1250

1000

execution time(us)

50 100 150 200

number of groups

Figure 5.1: performance on creating concurrent processes for consensus
without the library

using library, without aborts
10

execution time(ms)

50 100 150 200

number of groups
Figure 5.2: performance using the library with no retry for processes

log(groups) vs log(time) vs prediction

== |og(time) == prediction from first 4 values

Figure 5.3: log log analysis of implementation using library
36

execution with abort and retry=1
= 0% == 40% no abort
20

15

1o _ /\

50 100 150 200

number of groups

Figure 5.4: execution time of implementation using library and pro-
grammed aborts

by-case basis. The library provides an effective abstraction for easy design
and implementation of consensus scenarios in general. While there is a
performance difference due to the additional setup required in the library,
it is observed that execution time for both implementations grows similarly
with the scaling number of groups. The time of execution grows linearly
with the increasing number of groups.

Figure [5.3| shows the log-log analysis of the implementation using the
library. As observed, the overall analysis shows a slope of 0.965. However,
some deviation is observed with a higher number of groups. To demonstrate
it, predictions made from the first four readings and the actual readings
are compared against it. This deviation could be attributed to the higher
number of goroutines additionally required for each group as well as its
blocking communication with each process goroutines. This could also be
contributed to by the data structures such as slice used in the implementa-
tion. In [3] the performance deteriorated exponentially with the increasing
number of processes. However, the scheduler defined in [3] chose actions
randomly or driven by communication requirements. The approach here
brings an improvement through grouping processes according to a protocol
and executing them only after they are put into groups.

when aborts are programmed in the processes and the protocol is de-
fined to retry processes after aborts, the effective number of groups in-
creases. Aborted processes are grouped again, creating more goroutines.
This also increases the time of execution. As observed in figurd5.4] the
time of execution increases as the percentage of abort increases. This is
due to the restarting of processes, and regrouping them. This spawns a
new goroutine for Group Monitors and process executions.

37

5.3 Usability

To demonstrate usability, the library is used to implement a scenario similar
to SNO where all parties involved require something from peers. Consider
a scenario involving a group of people who can donate organs and require
donations too. A group of people can be formed where everyone benefits
from the group, creating a circle of dependencies. One person may donate
to another, but receive a donation from a third member of the group.
Following the interactive consensus behavior, the group size can be dynamic
in this scenario. However, in the design of this library, the protocol defines
the size of each group.

To model this scenario without the dynamic group size, we use the
library to define a protocol with some processes with role person and a
process labeled matcher in every group. Here the number of persons in a
group is set to 3.

organMatchingProtocol := lib.NewProtocol(
map [string]uint{"matcher": 1, "person": 3},
[1string{"matcher", "person"},
0, //retry count

We also define a Person object to pack the details of each person. If a group
is formed and requirements are met, the details of the group members can
be saved in this object.

type Person struct {
Id string
Needs string
CanDonate string
Matches *string

When a group is created, the Matcher can receive information from
all members in the group and keep track of what donations are required,
and what donations are possible within the group. This information can
be used to validate if all required donations are being satisfied within the
group. The matcher process could be designed as :

func(p *1ib.Process) {
//keep track of donations possible

offers := make(map[stringlint)
//keep track of donations required
require := make(map[string]lint)

//list of all peers
peers := [Istring{}

38

for i:=0; i< groupsize; i++ {

message, err := p.ReadMessage()
if err != nil {

return
}

// get peerld, requirement

// and donation from message

peerID := message["id"].(string)

donation := message["canDonate"]. (string)
requirement := message['"need"].(string)

peers = append(peers, peerId)
offers[donation] += 1
require[requirement] += 1

for r, num = range require {
if offers[r] < num{

p-Fail("requirements do not match donations")

return

The process labeled for a person then only needs to send its require-
ment and donation details to the matcher process. The person process can
then wait for a message from the matcher informing about all members in
the group. If the group cannot satisfy all requirements, the matcher will
use Fail method for a programmed abort. This will also kill the person

processes using context within a process.

func(p *1ib.Process, person *Person) {
p-SendToPeersByType("matcher", lib.Message{

"id": person.Id,
"canDonate": person.CanDonate,
"need": person.Needs,

b

message, err := p.ReadMessage()

if err != nil {
return

}

matchField := message["matches"]

39

matchesSlice := matchField. ([]string)
matches := strings.Join(matchesSlice, ";")
person.Matches = &matches

It has to be noted that the group size is not dynamic in this example.
However, the same processes can be used with different monitors, and thus
different protocols to find a larger group that can agree with each other.

40

Chapter 6

Conclusion

Consensus is common in all systems involving concurrent processing. It can
be a widely distributed system or an interactive application with multiple
concurrent processes to provide responsiveness. This variety of scenarios of
concurrency requires different approaches. A system has multiple choices
for approach regarding communication, and synchronization among such
concurrent threads. The programming languages currently available de-
cide to prioritize one method for communication as well as synchronization
capabilities. Consensus is not supported by programming languages and is
instead left to the programmer to implement.

This dissertation studies the abstraction for concurrent and transac-
tional processes provided by the work of Koutavas et al [3]. The intro-
duced abstraction is implemented in the Go programming language. Go
is a popular programming language with inbuilt support for concurrency
and is used widely in distributed system development. The library imple-
mented in this dissertation provides abstractions for easy implementation
of concurrent processes and modeling consensus scenarios among them. It
enables to design of the processes in a transactional approach. The library
handles the complexities of monitoring, communication, and the commit or
rollback of processes. The library also handles any runtime panics within
the designed processes and uses one goroutine per group to monitor its
status. This library used synchronous message passing through channels,
as well as shared mutex for its implementation.

The challenges posed by the concurrency and communication function-
alities in Golang, such as goroutines and channels are discussed. The per-
formance of the library is evaluated against a case-specific, from-scratch
implementation of a consensus scenario. It is observed that there is a per-
formance deficit due to the extra goroutines and communication abstracted
away by the library. The implementation using the library also scales al-
most linearly to a scaling number of processes.

41

6.1 Future work

Future work is to focus on enabling a dynamic grouping of processes.
Within the current implementation, the groups are created by protocols,
and protocols strictly define the number of processes and their roles in a
group. This restricts the library from being used for a more generic and
interactive problem like SNO where the group can grow if more willing par-
ticipants are available. Further improvements can be made by giving more
abstractions to steps detailed in the guidelines of the library. Cleaner ab-
stractions for avoiding deadlocks and sending messages can be introduced.
The latest version of Go also introduced generics. This has to be explored
to provide a better abstraction to define a process. A proper analysis of
the data structures used, and optimizations will be useful in improving the
performance generally, as well as when dealing with a larger number of
groups and processes.

42

Bibliography

1]

[10]

[11]

Herlihy, M., Shavit, N.: The art of multiprocessor programming. Kauf-
mann (2008)

Kshemkalyani, A.D., Singhal, M.: Distributed Computing: Principles,
Algorithms, and Systems. Cambridge University Press (2008)

Spaccasassi, C., Koutavas, V. (2014). Towards Efficient Abstractions
for Concurrent Consensus. In: McCarthy, J. (eds) Trends in Func-
tional Programming. TFP 2013. Lecture Notes in Computer Science,
vol 8322. Springer, Berlin, Heidelberg.

Reppy, J. H. (1999). Concurrent programming in ML. Cambridge Uni-
versity Press (1999)

Panangaden, P., Reppy, J. (1997). The Essence of Concurrent ML.
In: Nielson, F. (eds) ML with Concurrency. Monographs in Computer
Science. Springer, New York, NY.

de Vries, E., Koutavas, V., Hennessy, M.:. Communicating Transac-
tions. In: Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS,
vol. 6269, pp. 569-583.

Lamport, L., 2001. Paxos made simple. ACM SIGACT News (Dis-
tributed Computing Column) 32, 4 (Whole Number 121, December
2001), pp.51-58.

Ongaro, D. and Ousterhout, J., 2014. In search of an understandable
consensus algorithm. In 2014 USENIX Annual Technical Conference
(Usenix ATC 14) (pp. 305-319).

Choudhary, N. Effective Abstraction for Transactional Concurrent
Consensus(Elixir), 2021.

Field, J., Varela, C.A.: Transactors: a programming model for main-
taining globally consistent distributed state in unreliable environ-
ments. In: POPL. pp. 195-208.

Ziarek, L., Schatz, P., Jagannathan, S.: Stabilizers: a modular check-
pointing abstraction for concurrent functional programs. In: Reppy,

43

J.H., Lawall, J.L. (eds.) ICFP. pp. 136-147. ACM, NY (2006) ACM,
NY (2005)

”Context - Documentation”, Go standard library, August 2, 2022,
[Online], Available: https://pkg.go.dev/context [Accessed 18 - August
©2022]

"Reflect - Documentation”, Go standard library, August 2, 2022, [On-
line], Available: https://pkg.go.dev/reflect [Accessed 18 - August -
2022

44

Appendix A

Source Code

The repository containing the source code of the implementation and
examples demonstrating usage is available at:
https://github.com/Brotchu/concurrentConsensus

45

