. JV4 Trinity College Dublin

15 o; Colaiste na Trionoide, Baile Atha Cliath

The University of Dublin

School of Computer Science and Statistics

An Incremental Firmware Update
System for Zephyr OS

Yue Yu

August 17, 2022

A dissertation submitted in partial fulfilment
of the requirements for the degree of
MSc in Computer Science

Declaration

| hereby declare that this dissertation is entirely my own work and that it has not been
submitted as an exercise for a degree at this or any other university.

| have read and | understand the plagiarism provisions in the General Regulations of the
University Calendar for the current year, found at http://www.tcd.ie/calendar.

| have also completed the Online Tutorial on avoiding plagiarism ‘Ready Steady Write', located
at http://tcd-ie.libguides.com/plagiarism/ready-steady-write.

Signed; yM)/M Date: 17/08/2022

Abstract

The Internet of Things(loT) edge devices has limited resources, such as limited storage, RAM,
CPU performance, and bandwidth. However, the software that runs on them may occasion-
ally need to be updated, and this kind of updating is a challenge. Since loT devices are
resource-constrained, this dissertation would like to explore an approach that reduces the
update package size, improves the update efficiency, and considers this approach’s robust-
ness.

There are already many business solutions and research on this topic, but they mainly focus
on monolithic updates, i.e., overwriting the previous firmware entirely. However, improving
the current monolithic solutions is challenging to gain a better result because of many physical
level constraints—for example, chips’ frequency, Bluetooth bandwidth, and power supplies.
Therefore, instead of working on current monolithic update solutions to approach the hardware
performance limitation, we would like to find a different way to apply updates.

In this dissertation, we design three components to implement an incremental updating system.
The first component is a reversed FAT file system called rFAT. This file system merges multiple
device flash partitions into one, allowing one firmware to occupy more spaces and naturally
support firmware downgrade. The next is a different algorithm, BSDiff-Inplace, to apply an
incremental update. A different algorithm can generate a patch file, and the device can
recover the new firmware by using this patch and the old firmware. Moreover, BSDiff-Inplace
is explicitly designed for tiny devices, requiring less RAM than other difference algorithms like
BSDiff, EXEDiff, and Courgette. Last, because flash chips only support page-wise read/write,
we implement an EEPROM emulator to support random read/write.

Overall, this project accomplishes the main goals. For instance, users can generate a mini
update patch, send it to a device, and apply it. However, the performance of BSDiff-Inplace
can still be better, as its compression rate is only 50% of the compression rate of the original
BSDiff. Besides, in the future, exploring modular updates or a hybrid of incremental and
modular updates can improve the performance.

Acknowledgements

| would like to thank my supervisor, Dr.Jonathan Dukes, who gave me lots of advice while
coding and writing this dissertation. Moreover, as a non-native speaker of English, he is
always patient and enthusiastic. During this one year of study at Trinity College, | did not
only learn technologies and knowledge from him but also learned English skills from him.
Besides, | appreciate the Zephyr OS foundation and Nordic Semiconductor, which provided

me the software and hardware to support my project.

Besides, | also want to show my gratitude to good friends | meet in Trinity, Nithin, Kevin,
Marc, and Daanish. They helped me in both study and life, we had good teamwork, and |
expect we have a chance to collaborate again in the future works. In addition, as we all
experienced such a special and tough period, | would also like to show my respect to all
Trinity College and HSE staff for guaranteeing our health in COVID-19.

Last but most importantly, | want to thank my mom. She always supports my computer
science studies and believes | can be a good engineer. Even at this decreasing economic age,
she entirely found my tuition fee and living cost in Ireland. We haven't met for more than

one year, and | can’t wait to come back home and see her again.
Yue Yu
University of Dublin, Trinity College

August 2022

Contents

1

Introduction

1.1 Context.
1.2 Motivation
1.3 Challenges
1.4 Approach
1.5 Overview of structure

Literature Review

2.1 Firmware Similarity
2.1.1 Position-Independent Code (PIC)
2.1.2 Dynamic Linking

2.2 Difference Algorithms
221 Xdelta
222 EXEDIff . ..o
223 BSDiff . ..o
224 Courgette

2.3 Compression Algorithms
23.1 Lempel-Zivfamily
2.3.2 Huffman familyo

2.4 Update Application
24.1 Inplace Updates
242 Reversible Updates

25 Summary

Design

3.1 System Architecture

3.2 Reversed FAT (rFAT)
32.1 Requirement
322 Design
3.2.3 Design Critique

A W N R =

© 00 0O N o O

10
11
12
12
12
13
14
15
15
16

3.3 BSDiff-lnplace 20
33.1 Requirement 20
332 Design 21
3.3.3 Design Critique 26

3.4 EEPROM Emulator 27
34.1 Requirement 27
342 Design 28
3.43 Design Critique 29

Implementation and Evaluation 30

4.1 Prototype Implementation 30
411 rFAT backend 30
412 Bootloader 31

4.2 Workbench Implementation 32

4.3 Performance Evaluation 34
431 Metrics 34
43.2 Experiment Design 35
433 Result 35
434 Reflection 38

Conclusion 39

5.1 Future Work 39

List of Figures

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17

The essential stages in firmware updates [1]
Non-PICwvs. PIC
Dynamic linking example
The principle of EXEDIff.
Approximate Match Region in BSDiff
The Courgette workflow
The LZXX principle
A Huffman example of "helloworld!"
Devices that cannot load two firmware into memory or store on the disk.

Regular updates vs. Inplace updates

Reversible updates storage map for regular (top) and in-place (bottom) . . .

The system architecture overview
ROM map for nrf52dk running Zephyr OS without rFAT
Reversed FAT file system structure
Using file system to support rollback
Allocation listexample
Code difference comparison
Code difference in ARM Assembly
The original BSDiff vs. the in-place BSDiff
Approximate match in BSDiff
Approximate match region details
An overlap causes forward reference happens
Block-wise compressing by LZ77
Block-wise decompressing by LZ77
Move data backward to insert extra string in BSDiff
Insert extra string into pre-reserved paddings
Flash vs. EEPROM
A design of EEPROM emulator for flash

Vi

10
11
13
14
14
15
15
16

4.1
4.2
4.3
4.4

The steps to launch applications in MCUBoot 32

The steps to establish a IPSP node 33
Transmit a patch to a deviceby TCP 33
LZ77 compression rate with different block size 37

vii

List of Tables

2.1

3.1
3.2

4.1
4.2
4.3
4.4

The example of XDelta, applying a patchon anold file 10
The rFAT file system header format 20
An example of difference string in BSDiff 21
The size patches produced by BSDiff and BSDiff-Inplace 36
The size patches produced by BSDiff-Inplace with different block sizes. . . . 36
The MCUBoot memory map 36
The life cycle cost on different firmware 38

viii

1 Introduction

1.1 Context

The Internet of Things (loT) edges are frequently populated by small embedded computers
with minimal resources (limited flash storage, limited RAM, CPU performance, and
communication channels). The software that determines the behaviour of these devised may
occasionally need to be modified, for example, to correct erroneous behaviour, improve
performance, address new vulnerabilities, adapt to the introduction of new technologies or
otherwise modify the device's behaviour. Modifying or updating the firmware on remote,
resource-constrained devices remains a significant challenge. This dissertation will explore an
approach for reducing the update package size, improving the update efficiency, and

considering the robustness of this approach.

1.2 Motivation

Nowadays, firmware updates are becoming more critical than before. On the one hand,
these devices are widely deployed and take an important position in society. For example,
traffic lights, electronic bus timetables, smart home sensors, and manufacturing machines
are derived from loT chips. Thus, they are profitable to hackers, and security OTA updates
are essential. Moreover, new real-time operating systems like FreeRTOS and ZephyrOS
finish their hardware abstraction layer, allowing embedded device engineers to focus on
functionalities rather than the hardware itself. Therefore, the lower development costs allow

companies to offer products with continuous functionality updates.

However, firmware updates are complex. According to the study from Konstantinos
Arakadakis [2], network bandwidth and ROM size are the two main bottlenecks. First, most
SoCs equip 2.4GHz Bluetooth Low Energy (BLE) chip, allowing up to 256KB/s [3].
Nevertheless, in practical applications, it will be affected by various reasons, such as
bidirectional transmission, protocol header, CPU capability, and RF hardware limitations.
The speed will be much lower, around 10 to 50KB/s. Besides, the flash size also constrains

firmware updates. For reliability reasons, developers usually implement a rollback function

on devices because most users are unlikely to use wired flashing to recover a device once an
update fails. This rollback function is mainly implemented by storing an old copy on the
device. It means a firmware can use only half of the flash, which is challenging as this kind
of device usually have less than 1MB of storage. In this dissertation, the targeting platforms
are Nordic nRF52DK-52832 and nRF52840DK, using 2.4GHz Bluetooth as the network
access. The bit rate of which in a real environment is usually around 30KB/s, and the flash
size are 512KB and 1MB respectively.

According to the above data, how to optimize the process of transmitting update packages
to a group of devices and applying the update is a valuable topic. To achieve the goal, the

following approaches are commonly used:

(1) Monolithic updates, which are the most widely used and most straightforward way,

overwrites the old firmware.

(2) Modular updates, which place library codes on different places and libraries are
compiled position independently. Therefore, instead of replace the firmware, we can only

update the module we want to update.

(3) Incremental updates, which generate a difference patch from the old and new
firmware and the old firmware runs on devices can generate the new firmware by this

patch.

(4) Hybrid updates, which are also possible. For example, we can incrementally update a

module, which has potentially better performance than modular or incremental updates.

In this dissertation, we will explore an approach based on incremental updates. Because the
monolithic updates do not have much space to improve, we can get an instant benefit from
reducing the update package by using incremental updates, and modular updates are more
complex than incremental updates, requiring special executable format design. By following
the executable binary difference research [4] from Colin Percival, making an incremental
patch can reduce 90% the update size on average, and as a bonus, firmware can utilize more

flash space than a reversible monolithic update.

1.3 Challenges

In production environment, most solutions are still based on monolithic updates, and the
reasons can be attributed to the limited flash capacity, limited flash life cycles, limited RAM,
limited CPU performance, and identifying suitable algorithms.

First, the limited flash capacity forces us to use in-place updating because putting the old
and new firmware into two slots is already challenging; finding another place for the patch is

much more challenging. However, we can gain much free space if we use in-place patching.

Nevertheless, the cost is flash life cycles as the in-place operating is always with memory

moving.

Furthermore, the RAM size also limits us, i.e., we cannot read the full firmware into memory,
patch it, then write it back to the flash. Thus, our algorithm need to support stream-like
data 1/O. Meanwhile, we must consider the CPU performance, avoiding complicated

calculations.

Last, algorithm selections are also worth-talking. For example, the difference algorithm can
be Xdelta [5], EXEDIff [6], and BSDiff [4]; the compression algorithm can be BZip2 [7],
GZip [8], and LZ77 [9]. There are no perfect answers, and we need to trade the CPU and

memory costs.

1.4 Approach

The current firmware update solutions are all monolithic update based. However, we need to
integrate an incremental update feature for a bootloader to overcome the above issues. In
this dissertation, we will take mcuboot and ZephyrOS as an example because they have
official support from the manufacturer of the prototype devices used for this work, Nordic

Semiconductor.

The following key requirements are expected to be in our scope, as the main contributions of

this dissertation,

(1) Incremental update, which means users only need send a part of the new firmware

and the device can generate the entire new firmware on the device.

(2) Rollback, which allows users downgrade a newly updated firmware to the previous

version. It provides reliability to our firmware.

(3) Flash optimization, which aims to reduce the number of bytes to write to increase

the flash life cycle.

Besides, there are some interests that we would like to investigate but not at this time since
they are a bit out of the scope of incremental firmware update, such as network issues,

security, and privacy.

The below list is a brief of our approaches to implement the incremental update

system,

(1) Block Patch. An incremental patch will be organized as blocks, allowing multiple
blocks to be stored by a device simultaneously. Blocks are independent and can be
applied separately. Besides, already applied blocks can be released from RAM and even

the file system. In this way, we can utilize the limited RAM more efficiently. However, a

possible cost is that frequent block 1/O will slow the patching progress and spend more

flash lifetimes.

Dynamic Partition. It is the key to incremental updates on loT devices. Because the
existing solutions from Zephyr OS require a two-partition on small devices, and they are
also widely used by other real-time operating systems like freeRTOS [10] and
RT-Thread [11] , even though the other partition is unused, the one partition still
cannot exceed the partition boundary. The smaller update patch enables this dynamic
partition solution to allow a higher firmware flash memory usage. In our solution,

applying a patch will be in place to save the flash memory.

Decremental Patch. The decremental patch is a part of reliability that can give the
device a mini patch from the newer version to the older version, that is, a replacement
of a full-size rollback firmware image. Usually, the incremental patch is generated by
comparing the newer to the older image. The decremental patch can be generated in

the reversed way, generated by the difference from the older to the newer image.

In this dissertation, the incremental update workflow on tiny devices will be illustrated,

including the process of uploading a patch to a device and applying the patch, the process of

rollback, and the process of resuming an uncompleted update. Moreover, the multiple

metrics, e.g., the time of applying a patch, the compression rate of a patch, and the number

of bytes being read/written, will also be described to measure and judge the performance of

this work.

1.5 Overview of structure

This dissertation consists of five chapters as list shows:

(1)

(2)

(4)

(5)

Introduction, Chapter 1, which is this chapter, presenting the context and motivation,

approach, and structure overview.

Literature Review, Chapter 2, which composes of surveys of key technologies in this
dissertation, including the firmware similarities, binary difference algorithms,

compression algorithms, and update applications.

Design, Chapter 3, which illustrates the detailed system architecture. This chapter is
organized with an introduction to the architecture, followed by the specially designed

storage system, incremental patch algorithm, and prototype adapter for this system.

Implementation and Evaluation, Chapter 4, which includes workbench

implementation, prototype implementation, and performance evaluation.

Conclusion, Chapter 5, which summarizes the work done and the result against the

original requirements and discussing the future works.

2 Literature Review

This chapter aims to make a review of crucial mechanisms in firmware updates, and sections

will be organized as Figure 2.1 [1] shows:

(1) Firmware similarity, Section 2.1, which is a step to discover more chances to optimize

the patch size by comparing the old and new source code.

(2) Difference algorithm, Section 2.2, which compares the binaries from the old and new
source code and generates a patch file. With this patch, a device can build the new
firmware locally without the new source code and binary. Generally, a good difference
algorithm should minimize the patch size to reduce the transmitted bytes over the

network.

(3) Update application, Section 2.4, which is the last stage for installing the new
firmware. Moreover, update applications are also responsible for firmware reconstructing

and verifying.

Besides, dissemination, which is also in Figure 2.1, will be skipped because it is out of scope.
This stage is to make a reasonable choice from various types of networks based on
availability, reliability, and mobility. However, we focus on the local side in this dissertation.
Moreover, Section 2.3 about compress algorithms will also be included as an extension part
of difference algorithms. Since the difference algorithms are not responsible for compressing
data, a good compress algorithm can help difference algorithms achieve a better compression

ratio.

2.1 Firmware Similarity

Firmware similarity is not a new topic nowadays [12]. In the last century, the age that
people use limited memory and disk PC, the IBM System/360 (7 April 1964) was designed
with truncated addressing which is the prototype of the modern position-independent code
mechanism(Section 2.1.1). Furthermore, this idea also contributes to dynamic linking in
Section 2.1.2, which targets to reuse of object files for different programs and to update a

part of a program instead of the whole.

Old firmware Old firmware
source image

v v

New firmware 3 Improving |) . Differencing
source similarity New firmware image—>1 algorithm
Delta file

v

Dissemination

New firmware ¢ Update
loaded application

Figure 2.1: The essential stages in firmware updates [1]

2.1.1 Position-Independent Code (PIC)

Position-independent code is a compile-time mechanism to generate position-independent
assembly code. This mechanism is initially designed for shared libraries because a compiler
does not know where a shared library will be loaded. However, since other benefits of PIC
are realized, like anti-hook and improving flexibility, compilers can also generate PIC for

executable, so-called position independent executable (PIE).

The key to PIC is the global offset table (GOT). In general, it is an assembly section with
shared objects information and placeholders for external symbols, e.g., external functions
and variables. In this way, as Figure 2.2 displays, it is possible to convert a function call with
absolute address like "call <addr-to-function>", to a PIC function call like "call

<addr-to-got>". The GOT items are initially empty and will be filled by OS.

The most important is that PIC can also smaller the delta. In binary differencing, many
changes are caused by address changes. Therefore, putting addresses into the global offset
table and converting calls to PIC calls can remarkably reduce the address changes. The PIC
is a mature technology and is enabled in default in mainstream compilers such as GCC,
Clang, and MSVC.

non-PIC call PIC call

call printf — call printf

call GOT
GOT ‘\

at offset Oxabcd system tells me where is printf
(at runtime)
}JI libc |< !

Figure 2.2: Non-PIC vs. PIC

2.1.2 Dynamic Linking

The legacy programs were statically linked, meaning that different compiling units (different
. files) are integrated into a monolithic output. It is simple and still widely used. However,

two possible issues come with increasing software projects:

(1) Inflated executable, which asks users to update software monolithically, in the age

that incremental update does not exist, the age that people use dial-up Internet access.

(2) Limited storage, which was about 10KiB in the mid-1950s. To save storage,
programmers reused object files for different programs at runtime. This reuse

technology is dynamic linking.

For instance, as Figure 2.3 shows, they can reuse the instance from the system to save the
storage instead of owning their OpenSSL copy. Nevertheless, if there is any update of
OpenSSL, users only need to update once for all applications. They only need to update the
OpenSSL lib, e.g., libssl.so on Linux, rather than update many application bundles.

Mail

Web Brower

Depends —»| OpenSSL

SSH

Figure 2.3: Dynamic linking example

2.2 Difference Algorithms

A difference algorithm is a kind of algorithm which allows users to generate a patch from a
pair of an old and a new file. Besides, users can use this patch and the old file to recover
the new file. Generally, this kind of algorithm is commonly used in a software update and

document version management system, i.e., rsync, svn, and git.

A widely accepted opinion is that plain text and binary files are remarkably different, and we
should treat them differently in difference algorithms. For instance, in git, instead of logging
incrementally, binary files will be logged as "the new file replaces the old file monolithically".

Although there are some plugins to support binary diff for git, this kind of behavior still

approves that the text-based-oriented difference algorithms are not suitable for binary files.

At least, the performance is not as good as they work on text files.

In this section, we will explore the history of difference algorithms. First, section 2.2.1
introduces Xdelta, a simple and widely-used difference algorithm. Then Section 2.2.2
follows, talking about EXEDiff, a platform-related, executable-file-oriented difference
algorithm. Besides, BSDiff, a binary-file-oriented, platform-unrelated algorithm, will be given
in Section 2.2.3. The last part of this section, Section 2.2.4, will discuss Courgette, a

difference algorithm based on disassembling the target new file.

2.2.1 Xdelta

Xdelta is a widely used differential algorithm. The first version, Xdelta 1, was based on rsync
as a part of PhD thesis [13] of Andrew Tridgell. The latest release is Xdelta 3, organized in
VCDiff [14] format.

Xdelta3 has three instructions, ADD, COPY, and RUN. Assuming O and T are the strings
of the old file and target file, respectively, and the length of the old file is Lo, the three

instructions can be explained as:
(1) ADD(X,S): Copy a string S, the length of which is X, to the current position of T.

(2) COPY(X,Y): When Y < Lo, copy the following X characters from O[Y]; When
Y > Lo, copy X characters from T[Y — Lo].

(3) RUN(X, Z): Append character Z for X times on the current position of T.

Table 2.1 shows a detailed example. The old string is "abcdefghello," and the patch is
listed, then we need to build the target, i.e., recover the new string. Firstly, we append
"abcd" to the empty target because "COPY 4, 0" copies O[0..4] to T. Next, we need to
add "xdelta" to the target end since the "ADD" instruction. Then, the "COPY 5, 7"
requires us to copy O[7..12], that is, "hello," to T. Because 22 in the following "COPY 5,
22" is over Lo, we start to find the T itself and copy it, which is also "hello." Finally, we
run "RUN 3, " which means append three exclamation marks to T. Therefore, the final

result is "abcdxdeltahellohello!!IM".

Overall, Xdelta is a straightforward algorithm. It performs well in plain text because these
three instructions can represent what we will do for a document. However, the changes in a
binary file are more complicated. Usually, we only edit source codes, and a compiler
generates a binary file. Therefore, even a tiny change in codes can cause a significant change

in the output binary. Though Xdelta can work with binary files, it can still be better.

2.2.2 EXEDiff

To improve the performance on binary files, EXEDIff is raised [6] by Baker et al. This
algorithm uses two operations called pre-matching and value recovery to reduce the
influence caused by code changes. Pre-matching aims to find out the relationship between
the old and new files. This process is heuristic, assuming the program does not know the
source code. Moreover, the value recovery targets identifying changes that can be implicitly

stored in the patch.

rFunction Call Data Reference—¢

old Code Data

¢—Function Call—l I—Data Reference—¢

New
Code

new Old Code Old Code Data

Offset Added

Figure 2.4: The principle of EXEDIiff.

As Figure 2.4 shows, every new code block will influence the following address values,
including functions and data references. Therefore, EXEDiff uses the pre-matching and value
recovery mechanisms to calculate an approximate offset and try to minimize the delta size

(address changes).

However, this process is highly platform depended, based on the prior knowledge of a
specific machine architecture (like x86, ARM, and RiscV) and operating system. It was
initially developed and tested on x86 64 UNIX Alpha and can be adapted to other

platforms. Nevertheless, developing a new version for a new platform takes time.

To summarize, according to the research [15] by Giovanni Motta et al., both the patch size
and the patch size after BZ2 compression of EXEDIiff is 50% of XDelta. However, the cost is

Old abcdefghello
Instructions

COPY 4,0
Patch ADDG6,xdelta

COPY 5, 7

COPY 5, 22

RUN 3, |

Target abcdxdeltahellohellol!!!

Table 2.1: The example of XDelta, applying a patch on an old file

10

that we have to adapt EXEDIff for different platforms, which can be expensive.

2.2.3 BSDift

BSDiff [4] is designed to solve the cross-platform issue of EXEDIff. It also follows the
principle given in Figure 2.4 but sets the target to finding an approximate match region

instead of counting offset and minimizing the delta size.

Figure 2.5 gives an overview of the approximate match. In each iteration, BSDiff will find
one approximate match region, which contains over 8 bytes difference and is on the left
side(smaller index) of an exact match region. Every approximate match region consists of
three parts, as the figure shows. The forward and backward extensions are required to match
over 50% content between the old and new strings. The middle part, which can be empty,

will be skipped in the old string and is extra in the new.

Old Cursor Next Iteration Begin Old Iteration End

A A T

old Forward Extension Skip Backward Extension

LenF LenB

new Forward Extension Extra | Backward Extension

Y Y Y
New Cursor Next Iteration Begin New Iteration End

Figure 2.5: Approximate Match Region in BSDiff

Initially, the old and new cursor in Figure 2.5 starts from 0. After an iteration, they will be
set to OldlterationEnd — LenB and NewlterationEnd — LenB respectively. OldlterationEnd
is the position of the longest common string, which is from Old[NewCursor], and the
NewlterationEnd equals NewCursor + Len where the Len is the length of the above longest
common string. Besides, the difference threshold is 8 bytes because 8 bytes can be

considered an address change on 64 bits machines.

BSDiff stores the difference values between the old and new for forward extension, i.e., it
stores "001" if the old is "abc" and the new is "abd", because the 'd’ is one greater than 'c’
in ASCII. Moreover, the extra part will be saved in the patch file. As you may notice, BSDiff
does not compress the delta since it tries to save every difference. However, most changes in
a binary file are address values. Therefore, the diff strings generated by the old subtracting
the new are mostly filled with zero, which means the diff strings are sparse and highly

compressible.

In conclusion, BSDiff does not try to calculate an offset and use it to organize the patch file.

11

Instead, it tries to construct a sparse vector to represent the delta. According to Giovanni's
research, BSDIff 4 is sightly worse than EXEDiff in compression rate. On the other hand,
BSDiff 6, based on Colin's doctoral thesis, uses a sophisticated algorithm and offers about
20% smaller patches and almost the same compression rate as EXEDIiff. Besides, the most

important thing is that BSDiff solves the cross-platform issue in EXEDiff.

2.2.4 Courgette

Courgette [16] is a part of Chromium Projects used to generate patches for Google Chrome.
Courgette follows the idea of EXEDiff and moves a step forward - the developers focused on
solving the offset issues. They believed that, in source code, all the entities are symbolic

until the assembly or linking stage, which means it is possible to avoid offset issues if we can

revert an object file to an earlier stage.

Figure 2.6 illustrates the workflow of Courgette. The developers made a "disassembler" that
can split an object file into three parts: a target address list of internal pointers, all the other
bytes like resources and media data, and an instruction sequence. Once we have a
disassembled result, we need to run the "adjust" step, which means reconstructing a
symbolic table in Courgette. Then, we can use the disassembled and adjusted new to
generate a patch. Google claims that the patch is 30% smaller than the directly generated
by BSDiff.

Summarily, Courgette learns from EXEDiff and also uses BSDiff. Thus it gains an averagely
30% smaller patch file. However, it also accepts the backwardness of EXEDiff. Namely, this
algorithm is highly architecture related. Because Courgette is for Chromium which runs on

specific platforms, this trade is understandable but unsuitable for tiny devices. Furthermore,
assembling the patch and old files on loT devices is too expensive. Because this means that

we must make an assembler, like GCC, run on a small device.

2.3 Compression Algorithms

Compression algorithms can be mainly distinguished into two types, the Lempel-Ziv family
and Huffman family, which are dictionary and sliding window based, and Huffman tree
based, respectively. The Lempel-Ziv family will be introduced in Section 2.3.1, and Section

2.3.2 discusses Huffman-based compress algorithms.

2.3.1 Lempel-Ziv family

Figure 2.7 demonstrates the principle of Lempel-Ziv family compress algorithms. The main
idea is to find the longest common substring in a sliding window and use references instead
of saving the literal data. For example, LZ77 [9], the most initial version of the LZXX

12

old new

v v

| disassemble l

! v

old.asm l

new.asm |

Figure 2.6: The Courgette workflow

family, uses a triplet (x, y, z) to mark a reference region, which means moving to the x-th
byte in the sliding window, copying y bytes from here, and go to the next byte equal to z in
the incoming data. However, we may not benefit from a reference because a reference tuple
usually takes more than 3 bytes. Therefore, an improved algorithm called LZSS [17] was
developed on 1982, compares the compressed and uncompressed data, and uses the smaller
one to make sure the data is actually "compressed." Moreover, the reference tuple in LZSS
becomes (x, y), meaning moving forward x bytes, copying y bytes from here, then stepping
backward y bytes in the incoming data, which saves one byte for every reference tuple.
Besides, there are other variants of LZ77, like LZ78 [18], LZW [19], and Deflate [8], which

also hold the same principle and will not be introduced in detail here.

Overall, LZXX algorithms are sliding window based, so we do not have to have full access to
the data, which is memory friendly. However, the limited buffer also limits algorithms to find
more compressing chances. Therefore it averagely performs a lower compression ratio than

Huffman families, which will be illustrated later.

2.3.2 Huffman family

Huffman encoding [20] is a variable length encoding method based on Shannon's
information entropy theory [21]. It is a bit-wise character compression by the character

"I," which appears

frequency. For instance, as Figure 2.8 shows, in the string, "helloworld!",
three times, is the most frequent character. Thus, it is encoded into two bits, i.e., we use

two bits to represent "|" instead of 8 bits in ASCII.

13

\4

i~—-sliding window —-1

incoming data

Longest common substring
Figure 2.7: The LZXX principle

Because Huffman encoding is a global-wise compression method, it can have more
compression changes than LZ-based methods. It is widely used by compression software like
bz2, gzip, and 7-zip. However, the weak point of Huffman encoding is that we must go
through the whole data set to generate the Huffman tree while compressing. Besides, when
decompressing, we also need to load the whole tree, which is not friendly for tiny

devices.

Figure 2.8: A Huffman example of "helloworld!"

2.4 Update Application

Updating application is the application that runs on devices to install new firmware.
Generally, it is a part of the bootloader or operating system. The functionalities in update
application are changing. In this case, we take inplace updates and reversible updates into
account. Section 2.4.1 states inplace updates for loT devices. Then, reversible update is in
Section 2.11.

14

2.4.1 Inplace Updates

Inplace update is a way to apply updates on storage and memory-limited devices (Figure
2.9). Instead of creating a new firmware instance, the in-place update mechanism directly
works on the old firmware. However, it is also dangerous since the old firmware will be

unusable and hard to recover once an exception happens.

Besides, a challenge is in Figure 2.10 that a regular incremental update may read reference
out of order, e.g., in the figure, the blue block can reference the data front of the green
block (reference 1) in regular incremental update (left side). Unfortunately, it is incapable of
in-place update because the new firmware already overwrites the data backward. As the
right part of the figure, the old and new share the same memory, and the blue block can
only reference data behind the index len(ref1) + len(extral).

New Old

Memory or Storage

Figure 2.9: Devices that cannot load two firmware into memory or store on the disk.

patCh -

Can only reference

patch data forward

Regular Incremental Update Inplace Incremental Update

Figure 2.10: Regular updates vs. Inplace updates

2.4.2 Reversible Updates

Figure 2.11 demonstrates the storage map for non-inplace and inplace update mechanisms.
The non-inplace version is achieved simply by saving two different versions on the disk and
using a bootloader to select which firmware to boot. This design gives a guarantee to users.
That is, when the new firmware does not work, instead of letting the device down, users can

downgrade to the earlier version to recover the device.

15

bootloader slot 1 slot 2

patch: patch:

bootloader slot
old->new | new->old

Figure 2.11: Reversible updates storage map for regular (top) and in-place (bottom)

However, challenges exist if we want both to build reversible updates and keep a sizeable

continuous firmware space:

(1) CPU performance, the first thing we need to consider. Since complex calculations are

complicated for loT devices, choosing a lightweight patching algorithm is essential.

(2) Memory limit is another issue. In loT devices, we cannot read all of the firmware data
into RAM. For example, the sizes of firmware given in Section 4 are around 200KB,

whereas the RAM size is 32KB. Therefore, using in-place incremental updates is critical.

(3) 1/0O speed becomes an issue after we decide to use in-place incremental updates
because, in this kind of update, it is unavoidable to move blocks back, which is a

massive task for the I/O system.

2.5 Summary

Overall, we have three main methods to enhance the firmware patching process, increasing
firmware similarities, using better difference algorithms, and developing a better update
application (the patcher). Besides, we go through the popular solutions in these three
domains, and in this dissertation, we will focus on BSDiff, LZ77, and building a good update

application.

16

3 Design

This chapter starts with the system architecture in Section 3.1, illustrating how components
in this dissertation work together. Then, it introduces three components with trade-offs and

critique considerations,

(1) Reversed FAT, in Section 3.2, is a file system designed for this dissertation. It merges
slots to offer more space for the current firmware. Moreover, it natively supports saving

incremental and rollback patches as they are treated as regular files.

(2) BSDiff in-place, in Section 3.3, is the core, solving the problem of memory limit as it

does not require loading the full firmware into RAM.

(3) EEPROM emulator, in Section 3.4 provides an adapter for the above two
components to access the flash on devices. Because flash chips do not allow random

access physically, we need a software emulator to support random access.

3.1 System Architecture

Patch Provider

Cloud Apply patch Read patch from storage

Reboot to bootloader

Serial Port —+Fetch Patch Application

Bluetooth

B

Figure 3.1: The system architecture overview

The system architecture is given in Figure 3.1. As the figure displays, the bootloader is only
responsible for applying a patch and does not care about where to download the patch.

Besides, downloading a patch is the task of the application. There are reasons to use this

17

design. First, we follow the K.I.S.S. rule, i.e., keep it simple and stupid. So, a bootloader
should not care about things like what application runs on it, what functionalities the
application has, and where to download the application updates. Furthermore, the
applications are changing, but the bootloader is constant. In general, allowing the
bootloader to download updates means we need to compile bootloaders for different
applications, which is not a clever idea in most cases. Nevertheless, on the hardware side,

the limited storage also does not allow us to save duplicated network libraries.

After downloading, the patch will be placed in the storage, which is a specially designed file
system that will be explained in detail in Section 3.2. Once the application decides to
update, it reboots to the bootloader, and the bootloader will discover the patch in the
storage. Then, the bootloader will use BSDiff-inplace, an improved BSDiff algorithm on
memory occupation, to update. In the last step, the bootloader reboots and jumps to the

new application.

3.2 Reversed FAT (rFAT)

3.2.1 Requirement

512KB in total

Bootloader Slot 1 Slot 2 Scratch | Storage

200KB 200KB

Figure 3.2: ROM map for nrf52dk running Zephyr OS without rFAT

As the bootloader we use, MCUBoot reads the firmware at the beginning of a firmware slot,
and this behaviour is address-dependent, which means we cannot move the firmware in the
slot. Thus, to achieve an elegant way to integrate slots like Figure 3.2, putting the FAT
header at the end of the slot is a solution. This figure comes from the Zephyr, but it is also
a typical flash ROM layout for other embedded devices on other operating systems. Because
manufacturers want reversibility for their products, the most straightforward way is to keep
two slots in its lash, one for the current firmware and the other for the old firmware. Besides,
to reduce flash cost (the header size) and to decrease the write cost, we set the block size to
4KB (flash page aligned) because when the block size is less than a page, even if we only
want to modify one block, we are going to change multiple blocks in a page. Additionally,

we will not use the scratch and storage partitions as they are for the application.

18

3.2.2 Design

512KB in total

Bootloader rFAT Scratch | Storage
400KB
. Alloc rFAT
Flrmware Unused Paich list header

Figure 3.3: Reversed FAT file system structure

Rollback Update Alloc rFAT

Firmware Unused Patch Patch list header

Figure 3.4: Using file system to support rollback

Alloc List
Index | O 1 2 3 4 5
Next | 0O 0 4 5 3 0

Figure 3.5: Allocation list example

Figure 3.2 and 3.3 are the ROM structure on Nordic nrf52dk with and without rFAT
respectively. As Figure 3.2 displays, the firmware runs without rFAT should be less than
200KB. But firmware runs on rFAT (Figure 3.3 can be up to 400KB. Though, in most cases,
it is less than 400KB due to the header and allocation list occupations, the possible

maximum size is still more than the firmware in Figure 3.2.

Moreover, using a file system can also bring us the rollback function without extra pay. The
idea is given in Figure 3.4, which is putting the rollback patch file as a regular patch like the
update patch, and the device can choose which patch it will use. The only difference
between a rollback patch and an update patch is that the rollback patch is generated from

the new firmware to the old firmware, and the regular update patch is reversed.

Besides, the structure of header is on Table 3.1. The magic number is used to identify
whether this slot is treated as an rFAT file system. The block cnt field saves how many

19

blocks this file system has (each block is 4KB). Then, the firmware block cnt logs the
count of firmware blocks, which stands for firmware occupation and only exists at the
beginning of the slot. The "file entries" store files’ entries of this file system, up to 16 files.
Finally, the alloc_list is used as an array-based linked list, representing the file blocks. For
example, as Figure 3.5 shows, the "index" is the index of the block in the file system,
starting from the end of the slot. The "next" means the file's next block, and zero stands
for "end of file" (EOF). Therefore, index 0 will never be used to remove the ambiguous
meaning. We can find two files in this example, one starts from index one and takes only

one block, and the other is a 4-block length file, 2 —+ 4 — 3 — 5.

3.2.3 Design Critique

Although the rFAT is an elegant way to support a bigger firmware slot and supports rollback
naturally, it also uses flash size we do not need, i.e., the header and allocation list. Table 3.1
shows the flash occupation details, which uses 900 bytes on 400KB slots. Furthermore,
deleting a patch can cause file system fragments. Though a simple clean-up algorithm can
solve this, we also need to pay some costs, the flash life cycles. However, as loT devices will
not update frequently, and, we do not have to clean the fragments, this cost can be far

fewer than the expected reliable flash write cycles.

3.3 BSDiff-Inplace

3.3.1 Requirement

BSDiff [4] is initially designed for PC binaries, and it is not suitable for loT devices for two
reasons. First, the author aimed for global optimization of compression rate. Thus, we may
refer to a region before the current position while patching, which means we cannot do

BSDiff in place. However, as the reason stated in Section 1.2, the ROM and RAM size we

can use are limited. We highly prefer an in-place solution. Besides, since BSDiff does not

Table 3.1: The rFAT file system header format

Name Type Size (bytes) Annotation

magic uint32_t 4 must be "rFat" (0x54414672)
block cnt uinté4 t 8 the number of total blocks
firmware block cnt wuint64 t 8 the number of firmware blocks
file_entries array 480 file entries

alloc_ list array 400 file block allocation list

Total N/A 900 total ROM occupation

20

compress data, the author chooses BZip2 to compress the BSDiff output. Nevertheless,
BZip2 uses at least 100KB [7] memory (depending on the block size option), which is not
acceptable for loT devices.

3.3.2 Design

Old Code New Code

#include <stdio.h>
#include <stdio.h>

int main() {
int main() {
int flag = 0;
char name[] = “Alice”;
char name[] = “Alice”;

printf("hello, world!\n");

printf("hello %s!\n", name);

printf("hello, world!\n");
printf("hello %s!\n", name);

return 90;
return 0;

Figure 3.6: Code difference comparison

The in-place version follows the main idea of the original version, that is, constructing
difference strings to represent the difference between two files. For instance, assuming we
already have a pair of approximately matched regions, Table 3.2 shows how to get the
difference string. Because most changes in binary tend to be gentle address changes (4 or 8
bytes) or a breaking change (new function or code deletion), the result mostly consists of
zeros; in other words, it is highly compressible. Figure 3.6 raises an example. The green line

on the right side is the newly added code and will be considered an extra string in BSDiff.

Old char Old ASCII value New char New ASCII value Difference

H 72 H 72 0
e 101 a 97 -4
| 108 | 108 0
| 108 | 108 0
o 111 o 111 0

Result 0-4000

Table 3.2: An example of difference string in BSDiff

21

Old ASM Code New ASM Code

Disassembly of section __TEXT, _text: Disassembly of section __TEXT, _text:
0000000100003f1c <_main>: 0000000100003£30 <_main>:

100003f1c: ff c3 00 d1 sub sp, sp, #48 100003£30: ff @3 01 d1 sub sp, sp, #64
100003£20: fd 7b 02 a9 stp x29, x30, [sp, #32] 100003£34: £d 7b 83 a9 stp x29, x30, [sp, #48]
100003f24: fd 83 00 91 add x29, sp, #32 100003£38: fd c3 00 91 add x29, sp, #48
100003£28: 88 00 80 52 mov w8, #0 100003f3c: @8 00 80 52 mov w8, #0

100003f2c: 8 13 00 b9 str w8, [sp, #16] 100003f40: a8 c3 le b8 stur w8, [x29, #-20]
100003£30: bf c3 1f b8 stur wzr, [x29, #-4] 100003£44: bf c3 1f b8 stur war, [x29, #-4]

100003£34: a@ 2b 00 d1 sub x@, x29, #10
100003£38: @ 07 00 £f9 str x@, [sp, #8]
100003f3c: 01 0 00 99 adrp x1, 0x100003000 <_main+@x20>
100003£40: 21 60 3e 91 add x1, x1, #3992

100003£48: bf 83 1f b8 stur wzr, [x29, #-8]

100003f4c: a@ 3b 00 d1 sub x@, x29, #14

100003£50: €@ @b 00 £9 str x@, [sp, #16]

100003£44: c2 00 80 d2 mov x2, #6 100003f54: 01 00 00 99 adrp x1, 0x100003000 <_main+@x24>

100003£48: Be 00 00 94 bl @x100003£80 <_printf+0x100003£80> 100063£38: 21 90 3¢ 91 odd xi, x1, #4004
[T0000377c: 00 00 00 00 adrp %0, UX100003000 <_main+0x 100003(5c: c2 00 80 d2_mov)2, #6
£8c>

100003£50: 00 78 3¢ 91 add x, x0, #3998 100003£60: @b 00 00 94 bl 0x100003f8c <_printf+0x100003£8c>

100003£54: @ 00 00 94 bl 0x100003£8c <_printf+@x100003 ‘10@0"31‘64: e8 @b 40 £9 ldr x8, [sp, #16]
100003£58: €8 07 40 £9 ldr x8, Lsp, #8] 100003f68: 00 00 00 99 adrp x0, 0x100003000 <_main+@x38>

100003f5c: 00 80 00 99 adrp x@, 0x100003000 <_main+@x40> 100003f6c: 00 a8 3e 91 add x0, x@, #4010

100003£60: 00 b4 3e 91 add x@, x0, #4013 100003£70: €9 @3 80 91 mov x9, sp

100003f64: €9 03 00 91 mov x9, sp 100003£74: 28 01 00 £9 str x8, [x9]

100003£68: 28 01 00 £9 str x8, [x9] 100003£78: 08 00 00 94 bl 0x100003f98 <_printf+0x100003£98>
100003f6¢c: @8 00 80 94 bl 0x100003f8c <_printf+0x100003f8c> 100003f7c: a@ c3 5e b8 ldur wo, [x29, #-20]

100003£70: €0 13 40 b9 1dr wa, [sp, #16] 100003£80: £d 7b 43 a9 ldp x29, x30, [sp, #48]

100003£74: £d 7b 42 a9 1ldp x29, x30, [sp, #32] 100003£84: £f 03 01 91 add sp, sp, #64

100003£78: £f c3 00 91 add sp, sp, #48 100003£88: c@ 03 5f d6 ret

100003f7c: c@ 03 5f d6 ret

Figure 3.7: Code difference in ARM Assembly

Besides, the variable "name" will be taken place by the new variable "flag", e.g., if the
address of "name" was 0x0000, the address now is 0x0004 if int is 32 bits. Therefore, any
reference to "name" will be influenced as an 8-byte change, a gentle change marked as
orange. Moreover, the red line means the removed code, which will be ignored while
patching.

Though the main idea is the same, the steps are still different from the origin, shown in
Figure 3.8. First, we do not need to handle the overlap for reasons will be given later to
solve the forward reference issue, which is already illustrated in Section 2.4.1. Besides,
BZip2 is used as the compression module of the original BSDiff as BSDiff does not compress
data directly. However, BZip2 memory demands highly exceed the memory on our devices,
nrf52DK.

Figure 3.7 shows the code difference in Figure 3.6 in the view of ARM Assembly. The two
codes are obtained by compiling with ARM Clang and disassembling with objdump
command. The "volatile" keyword decorates the variable declarations for demonstration
because they would be optimized as two constants, and we cannot see this comparison. It
will not influence our conclusion, as in a true project, most variables involve calculations and
cannot be considered a constant. The green rectangle refers to the declaration of "int flag",
and it takes an integer variable of more than 4 bytes because of the byte alignment in C.
Besides, the orange square shows the address difference when referencing the "name"

22

Original BSDiff BSDiff In-place

(cursor =0) (cursor =0 >
cursor < new_size cursor < new_size

Y Y
find approximately find approximately
match match
calculate forward and calculate forward and
backward extension backward extension
y Y
slove the overlap write diff and extra
of forward and with LZ77
backward extension
Y
y ursor += len_forward
write diff and extra + len_extra
with BZip2
y
ursor += len_forward
+ len_extra

Figure 3.8: The original BSDiff vs. the in-place BSDiff

variable, and the offset difference is 4 bytes. Furthermore, the "hello world" printf call in the
red on the left is removed in the new ASM code. Last, as an extra note, the grey region is a

stub call generated by the compiler, but not a printf call.

To solve the above issues, we must go through the BSDiff first. As Colin’s paper [4], we find
out the an approximate match, new[x..x" 4+ k'] = new[y’...y’ + k'], for an exact match,
new[x...x + k| = old[y...y + k]|. This approximate match should contains more than 8 bytes
difference that new|[x’ + i] # old[x" + i + (y — x)]. Then, we extend this match region on
both forward and backward sides to get the final approximate match, the orange part in
Figure 3.9.

Next, the orange region details are in Figure 3.10. The part, length of which is lenf, will be
saved as a difference string by new([i] — old[i], the extra part will be stored as an extra
string, and the length of the skip part will be saved to let the patch program know the
number of bytes to be skipped. Finally, we need to move our cursor back lenb bytes, i.e., the

lenb part will be a part of lenf of the next iteration until the cursor moves to the end.

Now, we roughly know how BSDiff works. The process of determining the lenf and lenb trys

23

old_cursor new old_cursor

! !

old Match Region Match Region
at least 8 bytes difference exact match
new Match Region
new_cursor new new_cursor

Figure 3.9: Approximate match in BSDiff

next iteration start here

Y

old lenf skip lenb

new lenf lextra lenb

A

next iteration start here

Figure 3.10: Approximate match region details

to find the optimal result needs to be adjusted for in-place BSDiff. This optimal result can

be represented as

match(old, new, x)
score =

X

, match counts the number of matched bytes in the way mentioned above. We are trying to
find the highest score and the lenf equals the x when the score peaks. Also, the lenb is
determined in the same way, but the match starts from the end of the approximate match.
Whereas a case may happen like Figure 3.11 describing when the length of approximate
match in the old is shorter than it in the new, and there is not enough extra string,

lenf + lenb can be greater than the total length of the approximate match in the old. In this
case, forward reference happens. That is, we need the old data before recovering the

following new data, but in in-place patches, it is challenging. Because the number of

24

skipped bytes is calculated by

len _skip = (old _cursor — lenb) — (new __old _cursor + lenf)

, two-pointer algorithm can solve this issue. Instead of always looking for the best result, we
end the search when an overlap occurs, no matter in the old or new. Then, the cost is that
some bytes belonging to a different string in the original version may be put in an extra
string. Therefore, the compression rate may be slightly lower than the original
implementation, and the data will be given in Chapter 4. This compression rate downgrade

is necessary, supporting the BSDiff in-place running on tiny loT boards.

lenb

lenf

»
>

old lenf overlap lenb

new lenf lenb

Figure 3.11: An overlap causes forward reference happens

On the other hand, the compressing algorithm issue comes. According to the BZip2 official
manual [7], we need 100k + (4 x blocksize) or 100k + (2.5 x blocksize) to decompress,
costing more memory and less time or less memory more time. The default block size is
900KB, and the minimal size is 100KB. Unfortunately, both options cost too much memory
for our boards, and there is no low-memory low-level API from BZip2. Hence, we need a
replacement of BZip2, the LZ77, briefly mentioned in Section 2.3.1.

LZ77 is designed as a lightweight, dictionary-based compression algorithm. It uses a sliding
window, called history, to save the data already read. While new data comes, put in another
buffer area, the LZ77 finds a reference in the history and uses the reference to replace the

original data. This process is an ideal method for our scenario for two reasons:

(1) Flexibility. Because the principle is simple and flexible, we can choose our own buffer

size and windows size to fit our devices.

(2) Stability. The memory cost of LZ77 is stable, i.e., once the buffer size and window size
are decided, the memory cost is mathematically decided. Because there is no
uncertainty, we can use only the memory on the stack, avoiding risks from memory

allocation on the heap such as memory leak and memory overflow.

25

10KB +

Diff Extra

@ Split to blocks 100 b
Compress ytes

Lzr7 |C_»| 512BBlock | xN

len data

Figure 3.12: Block-wise compressing by LZ77

~1KB
Compressed Diff Extra
Decompress @ Split to blocks 100 bytes

lzr7 | >|ten| data | xN

512B Block

Figure 3.13: Block-wise decompressing by LZ77

Because of experiments discussed later, difference strings are maximally around 10KB. So, it
is unlikely to load the whole difference string in memory. Instead, it will be split into blocks,
and the LZ77 compresses each block and outputs. Figure 3.12 and 3.13 shows the details.
The "len" hints to the decompressor how many bytes it needs to read, and the "data" part
contains that number of bytes. Besides, blocks are independent. Therefore, we do not need

to save the history from other blocks.

3.3.3 Design Critique

Because of the in-place implementation, as Figure 3.14 illustrates, we have to partially move
firmware backward for times (about five times for a 20KB patch). This operation costs flash
life cycles, which can be reduced by padding zeros between blocks while compiling and
linking the firmware as Figure 3.15. However, because of the schedule limit of this project,
this padding solution is over-complicated. More detailed, we need to design a new linker
script, splitting an assembly section and padding with zeros. For example, there is a DATA
section, the size of which is 4KB. We can split it into two 2KB sections and link them to

26

move X bytes backward —— >

|
firmware new firmware old firmware I
insert extra € X bytes—)l

extra

[€=X bytes >

Figure 3.14: Move data backward to insert extra string in BSDiff

old firmware

firmware new firmware | block 0 | padding | block 1 | padding block n

%Ymm padding

extra

Figure 3.15: Insert extra string into pre-reserved paddings

two different positions, and the middle space is zeros.

Moreover, we only do this the first time and at the time when the middle space is out.
Besides, a sequence of challenges comes. For instance, what is a reasonable ratio between
the firmware and padding; how to distinguish which part of the code should be in the
padding without knowing the previous code? Therefore, we will not investigate it in-depth

this time, but it is an inspiring future work.

3.4 EEPROM Emulator

3.4.1 Requirement

Figure 3.16 shows a downside of flash memory. Flash memory has three 1/O operations,
read, write, and erase. The read operation follows the literal meaning, given an offset and a
size and reading the "size" bytes from the offset to a buffer. However, the write operation
differs from other common memory like RAM or EEPROM. The write operation can only set
1to 0 in a flash. For example, if we write 0b10101010 to a region that was 0b11110101, the
result is 0b10100000. To set 0 to 1, we need to use "erase".

Nevertheless, "erase" is a physically page-aligned operation, i.e., we must set a page (e.g. a
4KB aligned continuous memory) to 1. We cannot only set a part of a page to 1. So, we
need to develop an EEPROM emulator for flash, and the design will be introduced in the

27

1010 @b1010_1010 exactly
1010
9b1111_0101 -> 8b1010_0008, write only set 1 to 0
Flash
0b1111_1111, set all bits to 1, must page-aligned
1010 @b1010_1010 exactly
1010
EEPROM 0b1111_6101 ->8b1111_0101, write what the source is exactly

Figure 3.16: Flash vs. EEPROM

4KB (page size)

Read
Page In

0101010 in-Memory

1010101 Conte Flash

0101010
Page out

Erase + Write

Figure 3.17: A design of EEPROM emulator for flash

next section.

The EEPROM emulator hides from the programmer the necessity to erase an entire page to
modify just part of that page. It does this by maintaining a page in memory, and all

read/write operations are converted to access this page in memory.

3.4.2 Design

An EEPROM emulator design is given in Figure 3.17. This design is like a simplified
page-replacement algorithm, and it works in this workflow: once a batch of data is written
to the flash. Instead of directly writing it into the flash, we write it into a buffer in RAM.
Besides, the cache also holds a page ID. If the page ID of the data we want to write is
different from the page ID of the current in-memory page buffer, we first erase and write the
current buffer to the corresponding page in a flash, then read the page's content that the

data want to write.

28

3.4.3 Design Critique

This design is simple and easy to implement. However, flash chips, namely Read Only
Memory (ROM), are not designed for frequent writing, but firmware updates and, hence,
flash erase-rewrite operations are expected to be infrequent. Moreover, the EEPROM
emulator can be unreliable as it keeps changes in memory until they are committed to flash.
Though all changes will be saved in a flash when we call a "close" function, it can still lose
data, i.e., if an error happens and the system is halted. Therefore we have no chance to save

the changes.

29

4 Implementation and Evaluation

Currently, embedded system development is challenging because of the leak of toolchains,
i.e., visual debugging tools, variable watchers, and single-step debugging tools. It is worth
splitting the implementation into two parts, workbench implementation and prototype
implementation. The workbench implementation allows developers to develop, debug and
test the software without the complexities of the embedded system. Then, programmers can

port them to the embedded system.

Therefore, this chapter distinguishes contents into three parts: workbench implementation,
prototype implementation, and performance evaluation. The workbench and prototype
implementation show details of implementations close to the hardware and software side in
Section 4.1 and 4.2 respectively. Besides, in Section 4.3, the performance evaluation first
shows the metrics we care about, then explains how the experiments will be executed and

list the test cases. Finally, the results and reflections will be given.

4.1 Prototype Implementation

4.1.1 rFAT backend

The rFAT file system is designed in frontend/backend mode. The backend side defines
multiple interfaces, requiring developers to support random access for the flash chip, and

they are listed below.

(1) fs_area open(id, fs_area) accepts two parameters. One is the device ID, which
allows users access to a unique area of the flash chip, and the type of ID is
implementation-defined. In Zephyr OS, it is the partition ID, image-0, which is declared
in the device tree file(.dts file), as Listing 4.1 shows. The other one is the pointer to a
file system area as the output, and users need to use this pointer to call other functions

below.

(2) fs_area close(fs area) closes a file system, representing the termination of

occupation to a file system by the pointer.

30

(3) fs_area read(fs area, offset, dst, len) reads raw data from the opened file
system. It starts from the offset, and reads the following /en bytes to a buffer, dst ,

given by the caller.

(4) fs_area write(fs area, offset, src , len) writes raw data to the file system. The
parameters are the same as the read interface, but only the src differs. It indicates

where to read the data to write.

(5) fs_area get size(fs area, size) can get the total size of the file system, and the

return value is assigned to the size, which is a pointer as an output.

To implement these functions, we wrap the Zephyr Flash Map APIs [22] with our EEPROM
emulator. The Zephyr Flash Map APIs are similar to the rFAT backend definitions but have
an API called flash _area erase, setting all bytes in a flash page to 1 for reasons in Section
3.17.

&flash0 {
partitions {
slot0 partition: partition@c000 {
label = "image—0";
reg = <0x0000C000 0xd000 >;
}
/* other partitions ... x/
b
b

Listing 4.1: flash memory declaration

4.1.2 Bootloader

The bootloader steps are given in Figure 4.1—first, the hardware boot MCUBoot from the
beginning of the flash. Then, we check the device status from the flash. If this device needs
to update or roll back, it will check the existence of the corresponding patch file, i.e.,
"update.patch" and "rollback.patch". If it exists, we will open this patch and apply it.

Otherwise, the board will print an error message and halt.

Moreover, users can use the frontend APls of rFAT, which will be demonstrated later, to

" "heed rollback,"

manage patches on the device, and set the device status to "need update,
or "just boot." For example, we make an Internet Protocol Support Profile (IPSP) [23]
based patch receiver (Figure 4.2 and 4.3). This protocol is a Bluetooth profile that utilizes
6LoWPAN [24], i.e., provides IPv6 connectivity over BLE. We first need to integrate the

IPSP library in our application and flash it into a device with MCUBoot. Then, the device

31

Load Bootloader
(MCUBoot)

v

Check Update
Status

<]

ERROR and Halt

Open Patch File

v

Appy Patch

v

> Boot

Figure 4.1: The steps to launch applications in MCUBoot

boots, broadcasts its Bluetooth signal, and waits for a connection. Next, we use our PC (or
other devices) to connect to this board. Because we do not enable Dynamic Host
Configuration Protocol (DHCP) [25] on board, which can help our PC auto-configure our IP
table, we also need to manually configure the local IP table. A possible command for
configuring is "ip address add 2001:db8::2/64 dev bt0". Last, we can access our device over
IP-stack protocols, such as TCP [26], UDP [27], and HTTP [28], if the device implements

them and listens to them.

On the TCP part, we can use any tools supporting TCP transmission to send a patch to the
device. In our case, we use "nc 2001:db8::1 4242 < patch" to send the patch, where "nc" is
the abbreviation of the command line tool, net cat [29], and the left angle means that this

command takes the file, "patch," as the input.

4.2 Workbench Implementation

This section will introduces the rFAT frontend APls, which are designed for applications to
save patches and for MCUBoot to read and apply patches. These APIs are
platform-independent, i.e., they only call the rFAT backend APIls. Therefore, an advantage is
we can easily adapt them to other platforms. The APIs are defined in the following

way,

(1) rfat_fs open(id, fs _area) opens a rFAT file system, and the ID is implementation

32

Device broadcast info
(as a host)

v

PC connects to board
(over BLE)

v

Configure IP table
on PC

v

Use network tools to
communicate with
the board

Figure 4.2: The steps to establish a IPSP node

Start listen
TCP connection
I|

ACcpet signature
“BSDIFF/YUEYLU>

> Accept bytes

Not receive "EOF’

End

|

Clare buffer

Figure 4.3: Transmit a patch to a device by TCP

defined. In this case, it is the partition 1D, image-0, the same as above.

rfat_fs close(fs area) closes a opened rFAT file system by the given fs_area

pointer.

rfat_fs_init(fs_area, image size) initializes a file system, and it needs the size of
current image to decide the firmware region. Once the file system is initialized and

changed with rFAT APIs, the file system knows the change of firmware.

rfat _fs validate(fs area) validates whether a opened fs_area pointer refers to a

valid file system or not. The file system must start with a specific magic number.
rfat _fs zip(fs_area) can sort block fragments for reasons in Section 3.2.

rfat_open(fs_area, name, fd) opens a file by a given name, and returns a file

descriptor, fd. It is a stream-like |/O interface.

33

(7) rfat_close(fs area, fd) closes a opened file and commit all changes to the flash

storage.

(8) rfat_create(fs area, name, fd) creates a new file and returns the fd. If a file

already exists, this function returns error(-1).

(9) rfat_delete(fs area, name) deletes a file in the file system. If this file does not

exist, then returns error(-1).

(10) rfat_read(fs area, fd, dst, size) is the stream-like read interface. Therefore, we do
not need to set an offset to indicate where to read the data. The destination and the

number of bytes to read are the parameters dst and size, respectively.

(11) rfat_write(fs_area, fd, src, size) is the stream-like write interface. We still do not
need to pass an offset to this function. Besides, this function will read size bytes data

from src.

(12) rfat_read firmware(fs area, offset, dst, size) is designed because the
BSDiff-Inplace requires random access APls to modify the firmware. It reads the size

bytes from offset to dst.

(13) rfat_write firmware(fs_area, offset, src, size) is designed because the
BSDiff-Inplace requires random access APls to modify the firmware. It writes the size

bytes from src to offset.

(14) rfat_Is(fs_ area, entries) can list all files in the file system and put it in the entries,

which refers to file entries.

4.3 Performance Evaluation

After implementing the system functions, it is necessary to validate its reliability and
evaluate the system performance. This section first introduces the metrics in section 4.3.1.
Next, section 4.3.2 shows experiment designs, including requirements, steps, and limitations.
Then, the experiment results are shown in section 4.3.3 and reflections are placed in section
4.3.4.

4.3.1 Metrics

Because this dissertation mainly focuses on the incremental update on tiny devices, the

following metrics are critical:

(1) Compression Rate. Since one of the main reasons to use an incremental update is to
save the limited bandwidth on small devices, compression rate can stand for the extent

of the bytes we save while transmitting. Moreover, it is unrelated to a specific network

34

environment, i.e., we do not consider things out of scope, like multi-cast, signal
interference, and the detailed bit rate. Besides, in this dissertation, the compression rate
stands for how small the output file is, i.e., the lower the compression rate, the better it
is.

(2) Memory and Storage Occupation. The targeting boards run on small flash and
memory. Therefore, the peak memory and flash usage can be a reference to show how

small a board this system can run on.

(3) Flash Life Cycle. This dissertation uses the in-place incremental update, which is
unavoidable. Because many devices in a production environment need to work for years,

reducing the bytes to write while doing the in-place incremental update is also vital.

4.3.2 Experiment Design

In this project, we test the above three metrics separately. For compression rate, we will
compare the original BSDiff and our BSDiff-Inplace. Specifically, we will use the different
versions of the examples from the official Zephyr OS repository to make incremental patches
and observe the size of patches. Furthermore, as section 3.3 says, the bigger the block size,
the more chances we have to find references while compressing. Therefore, we will also try
different LZ77 block sizes to watch the relationship between the LZ77 block size and the

compression rate and memory usage.

Regarding the memory and storage occupation, it is hard to watch the dynamic data in
real-time. Fortunately, the official Zephyr OS tool-chain offers a tool to estimate the two

values, and we will take them as our results.

Last, the flash life cycle is data we cannot get an exact value. However, we can get an
approximate result by counting the written bytes and dividing them by the page size, which
is 4KB in this case.

4.3.3 Result

We select six test samples from another version listed in Table 4.1. The version is given in
the git commit hashtag format. The first column is the program name, the second is the
size of the new firmware, the third column displays the patch generated by BSDiff and
BZip2, and the last column gives the patch size generated by BSDiff-Inplace and LZ77 with
512 bytes block size. The output size of BSDiff is 25.03%, and the value of the in-place
version is 52.39% which is two times than the original. Though, it is still smaller than the

uncompressed monolithic updates.

To go more in-depth, we also want to explore the relationship between the LZ77 block size

and the compression rate. The samples are the same as above, and the results are in Table

35

Program Version Uncompressed BSDiff BSDiff-Inplace
blinky 0b286d7304 — el8fcbbaba 15176 B 2551 B 5471 B

button fff2644189 — be2e6a0850 18196 B 2726 B 5589 B

threads 5be0d00d41 — el8fcbbaba 29460 B 5535 B 11530 B

central alb77fd589 — 8el682dlea 113680 B 58638 B 110214 B
peripheral 6eb7574076 — 8el682dlea 169040 B 20806 B 58523 B

mqtt publisher fcd392f6ce — aa5187ecde 106852 B 38187 B 82140 B
Average Compression Rate 100% 25.03% 52.39%

Table 4.1: The size patches produced by BSDiff and BSDiff-Inplace

= Versi Block Size

rogram erston 128B 256B 512B 1024 B
blinky 0b286d7304 — el8fcbbaba 7207 B 6058 B 5471 B 5153 B
button fff2644189 — be2e6a0850 7807 B 6337 B 5589 B 5229 B
threads 5be0d00d41 — el8fcbbaba 15062 B 12779 B 11530 B 10900 B
central alb77fd589 — 8el682dlea 118120 B 112438 B 110214 B 109626 B
peripheral 6eb7574076 — 8el682dlea 80006 B 66029 B 58523 B 54383 B
mqtt publisher fcd392f6ce — aab187ecde 91700 B 85141 B 82140 B 80958 B
Average Compression Rate 63.1% 55.96% 52.39% 50.68%

Table 4.2: The size patches produced by BSDiff-Inplace with different block sizes

4.2. In this table, with the increase in block size, LZ77 gets more chances to use a reference

to replace literal data. However, the change in block size has a bottleneck. Figure 4.4

illustrates that the cost and gain do not have a linear relationship. For example, for the

columns in 128 and 256 bytes, we pay only extra 128 bytes and gain about 7% better

compression rates. Conversely, when we use 1024 bytes block size instead of 512 bytes block

size, the compression rate is less than 2% better. In other words, the efficiency, increasing

compression rate per byte, of changing 128 bytes block size to 256 bytes block size is 14

times the data of changing 512 bytes block size to 1024 bytes block size.

Name Memory Region Used Size Region Size Used (%)
FLASH 39104 B 48 KB 79.56%

MCUBoot SRAM 23616 B 64 KB 36.04%
FLASH 34808 B 48 KB 70.82%

MCUBoot-Incremental - g 34 KB 64 KB 53.12%

Table 4.3: The MCUBoot memory map

36

—8— LZ77 Compression Rate
62 1

60

58

56

Compression Rate(%)

52 A

128 256 384 512 640 768 896 1024
Block Size(Bytes)

Figure 4.4: LZ77 compression rate with different block size

Next metric, the memory occupation, is in Table 4.3. The first row shows the memory map
of the official release, using about 38KB flash and at most 23KB RAM. Besides, our
incremental update supported MCUBoot costs around 34KB flash and at most 34KB RAM.
The flash occupation of our version is 4KB less than the origin because our version removes
some cross-slots validation as we do not need it in a single slot device. However, the
monolithic MCUBoot needs this to decide which partition to update, rollback, or boot.
Besides, we spend 11KB more than the origin, which performs as we expect. 8KB out of
11KB is used for the EEPROM emulator, i.e., 4KB is for cached data, and the other 4KB is
for data swapping. Moreover, LZ77, with a 512KB block size, takes 1KB for maintaining a

decompressing queue and incoming data byte queue. Besides, the left 3KB is taken by other
functions on the stack.

37

Program Version Uncompressed Move Life cost

blinky 0b286d7304 — el8fcbbaba 15176 B 193466 B 12
button fff2644189 — be2e6a0850 18196 B 227621 B 12
threads 5be0d00d41 — el8fcbbaba 29460 B 1045760 B 35
central alb77fd589 — 8el682dlea 113680 B 46576547 B 409
peripheral 6eb7574076 — 8el682dlea 169040 B 26265095 B 155
mqtt publisher fcd392f6ce — aa5187ecde 106852 B 33302950 B 311

Table 4.4: The life cycle cost on different firmware

The flash life cycle can be estimated by counting the byes to write in Table 4.4. The
"Move" column shows the number of bytes that have been moved back, which can be
observed that the more the firmware size is, the more bytes need to be moved. The writing
times on the same page are 12, 12, 35, 409, 155, and 311, respectively. The life cycle is
10,000 to 50,000, depending on the flash quality.

4.3.4 Reflection

The two main downsides of our implementation are the compression algorithm and the
moving back operation in the bsdiff-inplace. For the compression algorithm, LZ77 does not
give a remarkable compression rate. Though it is the cost to use less memory, it can still be
better. For example, virtual memory can help, as it allows us to use a more expensive
compression algorithm to earn a better compression rate. Furthermore, if we update a device
every month, a device may only be used for 2 to 3 years. However, it is unlikely to update
such frequently. A possible solution already said in Section 3.3 is reserving zero paddings to

prevent too many byte movements.

38

5 Conclusion

The BSDiff-Inplace, a difference algorithm that offers two interfaces to generate and apply a
patch and balance the RAM and flash cost. People can use a small patch and the old
firmware on the device to generate the new firmware, avoiding transmitting a massive new
firmware entirely. To adapt this algorithm to Zephyr OS, we designed a reversed FAT
(rFAT) file system. Unlike the typical FAT file system, we put the FAT header and block
allocation list at the end of the flash because the bootloader, MCUBoot, loads the
application from the beginning of a flash partition.

Furthermore, we made an EEPROM emulator due to the physical feature of flash chips,
which only natively support page-wise read/write operations. Thus, we can use a flash as an
EEPROM, i.e., it supports random access. This implementation is like a page replacement

algorithm on modern PCs.
Overall, the results achieved the scope in the Introduction,

(1) Incremental update is supported by BSDiff-Inplace, which generates patches with
about a 50% compression rate, where the firmware is usually around 250 KB, so it can
reduce 125 KB data transmission while updating. Moreover, each update averagely
costs 200 flash life cycles. If a device is updated seasonally, a device can be used for

over ten years, and the flash life cycle is still in a safe range.

(2) Rollback is natively supported by the rFAT because we can treat a downgrade patch as
a regular file in this file system. Besides, this patch just "updates" the new version to

the old by generating from the new to the old comparison.

(3) Flash optimization is accomplished by the EEPROM emulator. With this component,

we do not have to refresh an entire page when we change one byte on this page.

5.1 Future Work

However, two issues influence the results. First, the compression rate of the original BSDiff
is around 75%, i.e., our version is 25% worse than it. Though it is caused by the trade

between memory and time cost, we still have many zones to improve. For example, we can

39

explore a hybrid patching system with modular and incremental updates. This approach can
potentially decrease the patch size remarkably, as it solves two problems. One is that the
current LZ77 compression is a local compression algorithm because we do not have enough
memory to load the full firmware in memory. Once we update firmware modularly and
update modules incrementally, it is possible to load a module totally in memory. Therefore,

we can use a global compression algorithm for more compression chances.

On the other hand, the next issue, the backward movement in the BSDiff-Inplace, takes
time, and the hybrid algorithm can also solve a flash life cycle. Because we can preserve zero
padding between different modules, we can add new data into the padding rather than
moving blocks back and spending many flash life cycles. Most importantly, it is also possible
to patch a module in memory and overwrite the result to the flash, i.e., the backward

movement issue can be ignored.

Summarily, this project is not perfect, and we would like to explore the more in-depth side of

firmware updates.

40

Bibliography

[1] Ondrej Kachman and Marcel Balaz. Firmware update manager: A remote firmware
reprogramming tool for low-power devices. In 2017 IEEE 20th International Symposium
on Design and Diagnostics of Electronic Circuits Systems (DDECS), pages 88-91,
2017. doi: 10.1109/DDECS.2017.7934581.

[2] Konstantinos Arakadakis, Pavlos Charalampidis, Antonis Makrogiannakis, and
Alexandros Fragkiadakis. Firmware over-the-air programming techniques for iot
networks - a survey. ACM Comput. Surv., 54(9), oct 2021. ISSN 0360-0300. doi:
10.1145/3472292. URL https://doi-org.elib.tcd.ie/10.1145/3472292.

[3] Carles Gomez, Joaquim Oller, and Josep Paradells. Overview and evaluation of

bluetooth low energy: An emerging low-power wireless technology. Sensors, 12(9):
11734-11753, 2012. ISSN 1424-8220. doi: 10.3390/s120911734. URL
https://www.mdpi.com/1424-8220/12/9/11734.

[4] Colin Percival. Naive differences of executable code. 08 2003. URL
http://www.daemonology.net/bsdiff.

[5] David Korn, J MacDonald, J Mogul, and K Vo. The vcdiff generic differencing and

compression data format. Technical report, 2002.

[6] Brenda S Baker, Udi Manber, and Robert Muth. Compressing differences of executable
code. In ACMSIGPLAN Workshop on Compiler Support for System Software (WCSS),
pages 1-10. Citeseer, 1999.

[7] Julian Seward. bzip2 and libbzip2. 1996. URL http://www.bzip.org.

[8] Peter Deutsch. Deflate compressed data format specification version 1.3. RFC 1951,
1996. URL https://www.rfc-editor.org/info/rfc1951.

[9] J. Ziv and A. Lempel. A universal algorithm for sequential data compression. IEEE
Transactions on Information Theory, 23(3):337-343, 1977. doi:
10.1109/TIT.1977.1055714.

41

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

FreeRTOS contributers. Market leading rtos (real time operating system) for embedded
systems with internet of things extensions, Aug 2022. URL
https://wuw.freertos.org/.

RT-Thread contributors. Rt-thread iot os, Aug 2022. URL
https://www.rt-thread.io/.

Wikipedia contributors. Position-independent code — Wikipedia, the free encyclopedia.
https://en.wikipedia.org/w/index.php?title=Position-independent_code&
01di1d=1063379139, 2022. [Online; accessed 14-July-2022].

Andrew Tridgell et al. Efficient algorithms for sorting and synchronization. 1999.

David Korn, Joshua P. MacDonald, Jeffrey Mogul, and Kiem-Phong Vo. The VCDIFF
Generic Differencing and Compression Data Format. RFC 3284, July 2002. URL
https://www.rfc-editor.org/info/rfc3284.

Giovanni Motta, James Gustafson, and Samson Chen. Differential compression of
executable code. In 2007 Data Compression Conference (DCC'07), pages 103-112,
2007. doi: 10.1109/DCC.2007.32.

Software Updates: Courgette — chromium.org. https://www.chromium.org/
developers/design-documents/software-updates-courgette/. [Accessed
13-Jul-2022].

James A. Storer and Thomas G. Szymanski. Data compression via textual substitution.
J. ACM, 29(4):928-951, oct 1982. ISSN 0004-5411. doi: 10.1145/322344.322346.
URL https://doi-org.elib.tcd.ie/10.1145/322344.322346.

J. Ziv and A. Lempel. Compression of individual sequences via variable-rate coding.
IEEE Transactions on Information Theory, 24(5):530-536, 1978. doi:
10.1109/TIT.1978.1055934.

Terry A. Welch. A technique for high-performance data compression. Computer, 17(6):
8-19, 1984. doi: 10.1109/MC.1984.1659158. URL
https://doi.org/10.1109/MC.1984.1659158.

David A. Huffman. A method for the construction of minimum-redundancy codes.
Proceedings of the IRE, 40(9):1098-1101, 1952. doi: 10.1109/JRPROC.1952.273898.

C. E. Shannon. A mathematical theory of communication. The Bell System Technical
Journal, 27(3):379-423, 1948. doi: 10.1002/j.1538-7305.1948.tb01338.x.

Zephyr Project members and individual contributors, Feb 2022. URL https://docs.
zephyrproject.org/3.0.0/reference/storage/flash_map/flash_map.html.

42

[23] Johanna Nieminen, Teemu Savolainen, Markus Isomaki, Basavaraj Patil, Zach Shelby,

and Carles Gomez. Ipv6 over bluetooth (r) low energy. Technical report, 2015.

[24] Geoff Mulligan. The 6lowpan architecture. In Proceedings of the 4th workshop on
Embedded networked sensors, pages 78-82, 2007.

[25] Ralph Droms. Dynamic host configuration protocol. RFC 1541, 1993. URL
https://www.rfc-editor.org/info/rfc1541.

[26] Postel John. Transmission Control Protocol. RFC 793, September 1981. URL
https://www.rfc-editor.org/info/rfc793.

[27] Postel John. User Datagram Protocol. RFC 768, August 1980. URL
https://wwuw.rfc-editor.org/info/rfc768.

[28] Roy Fielding, Jim Gettys, Jeffrey Mogul, Henrik Frystyk, Larry Masinter, Paul Leach,
and Tim Berners-Lee. Hypertext transfer protocol-http/1.1. RFC 2616, 1999. URL
https://www.rfc-editor.org/info/rfc2616.

[29] Hobbit. New tool available: Netcat, Oct 1995. URL
https://seclists.org/bugtraq/1995/0ct/28.

43

