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Interest in chatbots continues to increase rapidly. The fact that chatbots work in
harmony with different systems and applications has ensured the continuous development
of chatbot in today’s world. As a consequence of advances in artificial intelligence, ma-
chine learning, and deep learning fields, chatbots’ development techniques and usage areas
expanded. This develops a task-based chatbot that offers a personalized conversation ex-
perience in the context of car rental. While developing the intended chatbot, the study
did not use a pre-made training dataset and prepared its own training data. Experienc-
ing the struggles in the process of developing a chatbot that offers a personalized chat
experience with the training data it has created, this study also creates adaptive chat
flows in the chatbot it has developed to increase the user experience in chatbots. The
study completed an evaluation survey process by recruiting participants to evaluate user
experience based on user satisfaction.

The consequences of the study show that providing a personalized conversation expe-
rience on the chatbot has a positive impact on users’ experience, but at the same time,
the completed survey results show that, if possible, a significant portion of users would
choose to complete their transactions with real people instead of chatbots. Therefore,
future studies may continue the approaches presented in this study or explore new ways
to enhance the user experience in chatbots.
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Chapter 1

Introduction

The ultimate objective of the chatbot is to provide the conversation experience that users

get when communicating with an actual individual when users communicate with the

chatbot. The first known chatbot in history was developed by Joseph Weizenbaum in

1965 under the name ELIZA. In the article published by Weizenbaum (1966), sample

conversation flows are given for ELIZA, which is defined as a program that enables natu-

ral language conversation with a computer. The fact that chatbots, which have developed

considerably with the advancement of technology, have gained a form that can communi-

cate with the user by speaking with the user in an artificial intelligence-based structure

has further increased the user experience and the level of effectiveness achieved in this

field.

Chatbots are used for different purposes in various areas of the industry, from mar-

keting to human resources, customer service, and user support areas. The fact that users

can interact with chatbots 24/7 is one of the factors that enable companies to include

chatbots in their systems. Chatbots have different types of working approaches. The

completed study (Adamopoulou and Moussiades (2020)) presented the classification of

chatbots around six different parameters, with explanations. The classification factors

mentioned in the study (Adamopoulou and Moussiades (2020)) are as follows:

• Knowledge Domain is the type of classification that considers the amount of infor-

mation accessible by the chatbot or the amount of data used to train the chatbot.

• The service provided classification is the type of classification that relates to the

task the chatbot performs, while it relates to the intimate interaction and emotional

intimacy with the user.

• Goals-based classification takes into account the primary goal that chatbots aim to

achieve.

1
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• Another classification type is the input processing and response generation method,

which considers processing inputs and generating responses.

• Another type of chatbot classification is human-aid, which considers the amount in

the components.

• Chatbots can also be classified depending on their development platform. (Build

Method (Open-source platforms, Closed platforms))

The study (Brandtzaeg and Følstad (2017)) completed a survey that investigated

people’s motivations to use chatbots. Most respondents (64% of participants) cited pro-

ductivity as the main reason for using chatbots among motivation categories such as

Productivity, Entertainment, Social/relational, Novelty/Curiosity, and Others(for exam-

ple, easier to talk about important topics with a chatbot than a real person, etc.).

1.1 Motivation

Interest in chatbots continues to grow rapidly. It is possible to come across that chatbots

are included more and more in the services of companies with each passing day. In addi-

tion, it is possible to see that chatbots are increasingly embedded in electronic devices. In

the report published by (Next Move Strategy Consulting (2020)), a study was conducted

on the value of the chatbot market in the Banking, Financial Services and Insurance

(BFSI) sector between 2019-2030. This published report states that the Global Chatbot

Market in BFSI was valued at $586 million in 2019, and that this value is expected to

reach $6.83 billion by 2030. All this information and more shows that the developments

in this field will increase every year. The realization of a task-based chatbot experience

and the approaches to be implemented in this project would be valuable in a development

approach where conversational content is adaptively working by the user’s chat history.

The subject of this thesis, which will be focused on by research and development, is the

field of personalized chat experience in task-based chatbots. This area includes develop-

ment areas that will increase the interest in chatbots today. For instance, a personalized

chatbot can do the following:

• The fact that the conversation experience of the users with the chatbot is in a

more personal form allows the companies to increase their efficiency in areas such

as marketing and sales.

• Personalized chatbots can realize the user’s intent in less time than traditional

chatbots.
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• A chatbot that recognizes the user and designs conversation flows accordingly pro-

vides a more engaging user experience than traditional chatbots.

1.2 Research Question and Objective

This study, ”What are the challenges of developing a task-based chatbot that provides

a personalized experience in the context of car rental1?” will work on the question. In

carrying out this study, it aims to complete the following research tasks.

• This study aims to develop a personalized task-based chatbot in the context of car

rental.

• In this process, the study aims to develop its own corpus for car rental.

• The research aims to measure the intent classification accuracy of the chatbot it has

developed and the user experience in terms of user satisfaction with the real user

test it has prepared.

• The research aims to develop a chatbot that provides an adaptive and personal-

ized conversation experience to make the experience of task-based chatbots more

effective.

1.3 Research Methodology

The study focused on a project and application development process focused on the car

rental case for providing a personalized chat experience in a task-based chatbot. The

study will develop the training data itself for the application it will develop. The training

data will consist of groups containing vehicle information, as well as possible questions

that users may be asked about car rental and general answers to them. The study designed

a questionnaire for the evaluation process of the system it developed. This questionnaire

presents an evaluation process scaled on a scale of 1-5. All detailed information about the

survey to be completed and the recruitment processes of the participants are detailed in

the section 5.3.

1.4 Outline of the Dissertation

This report is structured as follows. In Chapter 2, the study will review the literature

and share information about the areas it will research/develop. Chapter 3 will focus

1Car rental was chosen as an application area that involves specific tasks by a dialogue.
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on the design part of the project. This chapter provides the grounding of the concepts

in the project before Chapter 4 Implementation. Chapter 4 Implementation explains the

project’s development processes and sample code blocks for some parts. Chapter 5 focuses

on the evaluation approaches of the project and explains the evaluation process. The last

chapter, Chapter 6, shares the study’s outputs and makes suggestions for future studies.



Chapter 2

State of the Art

This section will present research and background information on completed work in

chatbots. After researching chatbots, this section will focus on a literature review on

task-based chatbots. After completing the literature review on task-based chatbots and

personalized task-based chatbots, this section will examine the Rasa Framework and

explain the concepts that will be used throughout the study. In the final section of this

chapter, the study will provide an overview of the research it has completed and the

information it has shared throughout the chapter.

2.1 Background

A whole set of approaches must be completed and followed to provide a conversation flow

based on user interaction with the chatbot. Classifying a user-written input, correctly

extracting the entities intended to be captured on the input, making an intent classification

for user messages, and adapting the flow of conversation are vital areas to consider when

developing a chatbot.

A chatbot pipeline is shared in the work completed by (Nimavat and Champaneria

(2017)). According to this study, the chatbot first completes the basic input processing

processes on the input. The study cited algorithmic approaches such as Sentence Bound-

ary Detection and Sentence Parsing as examples for this phase. This stage is followed by

the process of making sense of the input. The study showed approaches such as intent

classification and entity extraction at this stage. The working chatbot pipeline has been

completed with the response generation in the 3rd stage and the answer selection process

in the final stage.

Thanks to advancements in Machine Learning and Natural Language Processing, chat-

bots are freed from the limitations of rules and pattern matching (Caldarini et al. (2022)).

The research (Caldarini et al. (2022)) stated that the commercial use of chatbots, which

5
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gained flexibility in the scope of Machine Learning and Natural Language Processing, was

positively affected by these developments. The research stated that the application areas

of chatbots had expanded considerably with the involvement of Deep Learning in the

process. The development of intelligent personal helpers such as Siri by Apple, Alexa by

Amazon, Cortana by Microsoft, Google Assistant by Google, and Watson by IBM are ex-

amples of innovative application areas of chatbots. These assistants are on smartphones,

watches, and even in vehicles, and they provide communication by speaking beyond typ-

ing (Caldarini et al. (2022)). These intelligent systems, which understand what users say

with Natural Language Understanding, are not only personal assistants but also have

many task-oriented chat flows.

2.1.1 Task Based Chatbots

Task-based chatbots are systems that shape dialogue for a specific purpose. These systems

focus on a chosen context and gain a task-oriented working structure by being trained on

the training data created in this field.

2.1.1.1 Architectures

Conversational agents are formed of similar architectural components. The interpretation

of the messages reached is managed by the flows in which natural language comprehen-

sion processes and language models exist. Behind chatbots’ input processing and response

generation processes lies a series of processing processes. Systems consisting of many com-

ponents such as parsers, resolvers, and debuggers constitute the architectures of chatbots.

The architecture in figure 2.1 presented in the work completed by (Xie et al. (2022)) is

based on a modular design. This architecture includes a Knowledge Base (KB) / Backend

action structure in addition to its components such as Natural Language Understanding,

Dialogue Management, and Natural Language Generation. The Knowledge Base (KB)

structure can be a database or a knowledge graph structure for processing the user’s

queries during the dialog. Another point to be discussed in this architecture is the Or-

chestrator module. While this module provides communication between the user and the

system, it works in connection with other components. As seen in Figure 2.1, the message

transmitted by the user first reaches the Orchestrator module. In addition to being the

module that the user message reaches, this module is also responsible for transmitting

the response created for the user to the user. The Natural Language Generation com-

ponent is triggered by Dialogue Management (DM). This component triggers the NLG

component for the following action/statement with the collaboration of Knowledge Base

(KB)/Backend action and Dialogue Tree Manager.
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Figure 2.1: Proposed task-oriented dialog system architecture by (Xie et al. (2022))

The architecture, which is developed for the deep learning model in work completed by

(Chou and Hsueh (2019)), has a generator and a discriminator. The generator is a long-

short term memory model used to build dialogues, and the discriminator is a long-short

term memory model used to examine and allocate rewards according to the difference

between the sentences formed and the actual responses.

The architecture developed by Chou and Hsueh (2019) consists of a recurrent neural

network (RNN) and long short-term memory (LSTM). Both components are used to

construct sentences. The developed deep learning model improves the generated sentences

with reinforcement learning (RL) and generative adversary networks (GAN). Component

1 consists of fields that allow user login. User interfaces for these areas can be given

as examples. Component 2 is the area where data processing is performed. Component

3 contains a neural network. This neural network is applied to construct and define

sentences. The generator is a long-term memory model for creating various dialogues.

Each sentence created in the model is mapped as having an action code, a dialog manage

code, and a person code. The discriminatory part consists of a long-short-term memory

model for assigning low rewards for repeated sentences and high rewards for various

sentences between constructed sentences and actual responses.

The completed study (Surendran et al. (2020)) suggests a task-oriented retrieval-based

chatbot on the bus ticket reservation field. Figure 2.2 shows a basic architectural design

of the chatbot system proposed by (Surendran et al. (2020)). The study uses Keras deep

learning library with a Sequential model. The work applies a preprocessing process to

the input to remove unhelpful content from the input it reaches. The work that reads the

dataset with the Pandas library makes use of the Natural Language Toolkit (NLTK) and

string handling functions during the preprocessing of the input. After the preprocessing is
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Figure 2.2: The basic architecture of the chatbot by (Surendran et al. (2020))

complete, the study uses feature generation techniques to convert the input into machine

understandable form and is based on the Bag of Words (BOW) approach to generate

features. In the next process, the output of the feature generator goes as input to the

deep learning model. After the deep learning model, the list of goals is created with the

probabilities. Intentions that are more likely than the error threshold are considered. The

task of the response generation module is to select the most appropriate one for the query

entered from the filtered list. The list of intents is checked against the repository (JSON

file), and the response matching the input is complete.

Study Details (model features, components, etc.)

(Surendran et al. (2020))

Sequential Model with following parameters:
-Dense Layer
-ReLu and Softmax Activition Functions
-SGD Optimizer
-threshold: -0.25, epochs: 200, batch size: 5

(Chou and Hsueh (2019))

Recurrent Neural Network (RNN)
Long Short-Term Memory (LSTM)
*Deep learning model combines:
-Reinforcement Learning (RL)
-Generative Adversarial Networks (GAN)

(Xie et al. (2022))

The study proposes a flexible tree-based modular
task-oriented dialog system, and this proposed
system uses an and-or tree structure to represent
tasks. In the study, a discriminative nearest
neighbor classification based on natural language
inference (NLI) was used. The study set a
threshold value for the inference score of 0.6 ∼ 0.8
to overcome the OOS intent issue.

Table 2.1: Summary and Comparison table for models & architectures
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The table 2.1 provides a comparison of the approaches used in study (Surendran et al.

(2020)) and study (Chou and Hsueh (2019)) on the basis of deep learning models. In

addition, the prominent features of the studies can be seen in the same table.

2.1.1.2 Sample Applications & Datasets

Task-Based Chatbots focus on the realization of a specific user purpose. In this respect,

working with customized data sets will increase the success of the trained model created.

The in-house (Snips Natural Language Understanding benchmark dataset) open dataset

described in the study published by (Coucke et al. (2018)) is a slot-filling dataset contain-

ing seven different types of intents. 7 different intent classifications consist of PlayMusic,

GetWeather, BookRestaurant, AddToPlaylist, RateBook, SearchCreativeWork, Search-

ScreeningEvent intents. The slots associated with these intent types are as follows:

• PlayMusic intent type is associated with slot values such as playlist, artist, genre,

album, year, music item, and service.

• GetWeather intent type is associated with slot values such as city, country, state,

poi, time range, condition, temperature, spatial relation, and current location.

• BookRestaurant intent type is associated with slot values such as sort, party size nb,

party size descr, spatial relation, city, country, state, poi, restaurant type, restaurant

name, cuisine, served dish, time range, facility.

• AddToPlaylist intent type is associated with slot values such as name, artist, playlist

owner, playlist, and music item.

• RateBook intent type is associated with slot values such as type, name, rating unit,

best rating, rating value, select, and series.

• SearchCreativeWork intent type is associated with slot values such as type and

name.

• SearchScreeningEvent intent type object, type, name, location type, location name,

spatial relation is associated with slot values such as time range.

Multi-Domain Wizard-of-Oz (MultiWOZ) (Budzianowski et al. (2018)) is the corpus

that contains large-scale trainable task-oriented dialog models. MultiWOZ Dialogue Cor-

pus, which is a task-oriented corpus, has seven different domains (expanding to a total of

8 domains) (Budzianowski et al. (2018)). These domains are Attraction, Hospital, Police,

Hotel, Restaurant, Taxi, and Train. Among these domains, Hotel, Restaurant, Taxi, and

Train are domains that contain the Booking subtask in addition.
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Figure 2.3: A task template by (Budzianowski et al. (2018))

Action-Based Conversations Dataset (ABCD) (Chen et al. (2021)) is a dataset con-

taining fifty-five different user intents and over ten thousand dialogues. In addition, the

ABCD dataset contains 30 domains and 231 unique slots. The study proposed a new

technique to capture the natural dialogue between two interlocutors. In this technique,

called Expert Live Chat, conversations are carried out in real-time and continuously, while

users have the opportunity to chat with each other in a free-form style. The collection

of Action-Based Conversations Dataset (ABCD) using Expert Live Chat instead of tem-

plates caused various language variations to be seen in chats. The completed study (Chen

et al. (2021)) also noted the difference between the fully labeled ABCD dataset and the

MultiWOZ (Budzianowski et al. (2018)) dataset.

The Airline Travel Information System (ATIS) (Tur et al. (2011)) corpus contains

17 different intents. The three most commonly used intents are Flight, Airfare, and

Ground Service (Tur et al. (2011)). The research stated that this corpus was used in

many studies on spoken language understanding (SLU) in dialogue systems. The research,

which says that the two main tasks in the spoken language comprehension processes are

intent determination and slot filling, states that the studies using the ATIS test set re-

ported an error rate of less than 5%.
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Dataset Name Details
Multi-Domain

Wizard-of-Oz (MultiWOZ)
(Budzianowski et al. (2018))

It has 7 domains and 10, 438 dialogues (3,406
single-domain dialogues and 7,032 multi-domain
dialogues)

Action-Based
Conversations Dataset (ABCD)

(Chen et al. (2021))

It has 30 domains, 231 slots, 55 intents, over
10K dialogues

The in-house (Snips Natural Language
Understanding benchmark dataset) open dataset

(Coucke et al. (2018))

It has 7 intents and each intent contains an
approximately equal number of utterances.

Airline Travel Information System (ATIS)
(Tur et al. (2011))

It has 17 different intents, and the Flight intent
has about 70% density in training and test sets.
As used in the study(Tur et al. (2011)), the
training data consists of 4,978 utterances, and
the test data consists of 893 utterances.

Developed corpus in this study
It operates in the context of car rental and it
has 13 slots, 13 entities, 20 intents, 357 example
user input data

Table 2.2: Summary and Comparison1table for datasets

2.1.1.3 Dialogue Examples

Task-Based Chatbots aim to provide an effective speaking experience with customized

training for different domains that they are developed to perform a specific task. Below

are sample conversation streams shared in the completed work by (Yeh et al. (2022)).

Figure 2.4: Sample Dialogues (Yeh et al. (2022))

The work completed by (Yeh et al. (2022)) presented chatbots in the context of travel

1Features specified for some datasets may not be specified in all datasets added to the table. This
is dependent on references and the availability of accessible information. This can make comparisons
between datasets somewhat difficult.
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arrangement and movie booking on IBM Watson. This study conducted on 4 differ-

ent guidance timings (Service-onboarding, Task-intro, After-failure, Upon-request) and 2

guidance types (Example-based, Rule-based). The figure 2.4 shows the sample dialogues

presented in this study, the first two dialogue flows take place in the context of the movie

and the last two dialogue flows in the context of travel. While the first dialogue creates

an example for rule-based guidance(the user sees a message listed with items about the

format) and service-onboarding timing(the user gets guidance with a short introduction

at the beginning) in the context of the movie, the second dialogue flow is again in the

context of the movie with the rule-based guidance and task- It is an example for intro

timing (user sees a guide message at the beginning of the task). the third and fourth dia-

logues take place in the context of travel as stated. The third dialog flow is an example for

example-based guidance (the user sees a sample input example) and after-failure timing

(the chatbot sees guidance for the correct input when it cannot determine the intent of

the user-specified message), while the fourth dialog flow is example-based guidance and

It is an example for upon-request timing (user sees guide after request).

Figure 2.5: Sample interaction (Chen et al. (2021))

It is seen that the dialogue in figure 2.5 of Action-Based Conversations Dataset

(ABCD) suggested by (Chen et al. (2021)) to create task-oriented dialogue systems con-

tinues in accordance with the flow in the agent guide. In addition, the meaningful data
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specified by the user during the conversation can also be seen as highlighted.

Figure 2.6: Goal-oriented Conversation Flow by (Bordes et al. (2017))

Figure 2.6 published in the work completed by (Bordes et al. (2017)) contains a di-

alogue flow about booking a table in the restaurant. Green areas indicate the user’s

message, while blue areas indicate the bot’s messages. The red areas on the figure rep-

resent API calls shaped according to the user’s messages. As you can see, the API calls

are updated according to the messages of the user during the chat. In addition, the work

presented the dialogue by partitioning it on the basis of tasks.
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Study Propesed Works

(Yeh et al. (2022))

Investigates which combination of two guide types and four timings provides a better
experience and user performance. The findings led to a set of design proposals for
task-oriented chatbots. Additionally, the study encouraged future researchers to test the
efficacy of proposed designs in real-life scenarios.

(Chen et al. (2021))

Introduces the Action-Based Conversations Dataset (ABCD), which is a fully labeled
dataset. Additionally, The study proposed additional dialog tasks.
-Action State Tracking, which aims to determine the proper intent by analyzing customer
statements.
-Cascading Dialogue Success is proposed to measure the model’s capability to comprehend
actions in context.

(Bordes et al. (2017))

The study proposes a test environment for end-to-end dialog systems in goal-oriented
applications. The study evaluated various methods (end-to-end Memory networks,
rule-based systems, and others*) on goal-oriented conversation tasks. The study shared
the test results obtained in all the tasks and methods it applied and stated that although
some effects of the tried methods were seen, there are still many unresolved challenges.

Table 2.3: Comparison and Summary table for example studies.(*classical information
retrieval methods, and supervised embeddings)

2.1.1.4 Fundamental Processes

As explained in the study completed by (Caldarini et al. (2022)), the inclusion of natural

language processing and machine learning in the development processes of chatbots has

expanded the usage areas of chatbots. The inclusion of Deep Learning algorithms in the

process has further expanded the existing structure.

Conversational agents need natural language processing and natural language under-

standing capabilities in order to maintain mutual dialogue (in an intelligent manner) with

users. (Coucke et al. (2018)) presents a natural language comprehension pipeline. The

exported pipeline Snips belongs to NLU and contains the main component ”NLU engine”.

The first component is the intent parser, this component handles intent classification and

slot filling. The last step of the NLU pipeline is the resolution of the slot values. The

extracted asset values are mapped to the corresponding built-in assets. After the slot

values are filled in, the process of determining the intent and extracting the meaningful

parts is completed.

When the user request is understood, necessary actions and information retrieval pro-

cesses are performed (Kucherbaev et al. (2018)). For example API calls etc. operations

are performed at this stage. As a result of the completion of the information retrieval

processes, the response generation component generates a response. The dialog manage-

ment component is the part (Kucherbaev et al. (2018)) where parts of the conversation

(defined or missing entities, may be current intent) are kept and updated. This compo-

nent can also perform tasks such as processing user comments, asking follow-up questions,

requesting missing information.

Task-Based Chatbots keep the conversation going so that a specific task can be com-

pleted most effectively. At this point, it is vital to model the chatbot by training it with
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appropriate dialogues for a particular task. The study (Surendran et al. (2020)) described

the data as one of the main keys and stated that the data set is crucial for the chatbot

to provide an effective conversation.

Study (Tur et al. (2011)) stated that the two main tasks in Spoken Language Un-

derstanding (SLU) are intent setting and slot filling. In fact, the continuation of the

interaction of conversational agents with the user is also related to the ability to under-

stand the language used. In this respect, natural language understanding capabilities are

one of the critical processes of a conversational agent.

Based on all these points, in the process of conversational agent development, after ob-

taining the appropriate training data, the process from successfully interpreting the user’s

answers to providing the relevant answer, Natural Language Understanding, Dialogue

Management Component (can be used with different names and connected additional

components), Response Generation, Natural It enables Language Generation processes to

be characterized as basic processes.

2.1.2 Adaptive/Personalised Task Based Chatbots

The study, completed by (Shumanov and Johnson (2020)) focuses on more personalization

of conversations with chatbots. It was stated that more than 57,000 chatbot interactions

were used in this research and focused on the effect of the language used on personaliza-

tion. The study shows that chatbots can be manipulated through response language. The

study also stated that chatbots and user personality fit also benefit companies. Chatbots

(intelligent agents) that are built with self-feeding models that learn from past conversa-

tion flows aim to get to know the user, rather than follow predefined rules and flows that

general answer questions from users, use natural language processing and machine learning

approaches. An effective definition of personality is essential for creating a personalized

chatbot experience. The research (Shumanov and Johnson (2020)) focused on the Big

Five(Agreeableness, Conscientiousness, Extraversion, Neuroticism, Openness) model in

this regard. The researchers noted that a panel of nine psychology and language experts

was used to verify that chatbot responses used words and language compatible with in-

troversion and extroversion. The research also stated that an excited response would be

created in response to the message of a user with an extroverted personality type. At this

point, a personal chat experience is based on personality types.
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Figure 2.7: Sample Responses for an extroverted and introverted user (Shumanov and
Johnson (2020))

The figure 2.7 was included in the report of the study completed by (Shumanov and

Johnson (2020)) as an example of the influence of personality type on responses. This

study states that pairing a chatbot with a personality type compatible with customers with

a customer will increase user-chatbot interaction. The study also stated that this situation

produces results that may be beneficial for companies financially. Another approach

considered in this study is that people feel close to themselves while interacting with

other people; that is, they maintain more effective communication with people with similar

personality types. The study was inspired by this aspect and stated that people are more

likely to communicate with chatbots with similar personalities. This research, which

indicates the importance of the personality factor in human-machine communication,

states that the social gain from chatbots can be increased with the developed method.

The study also states that the findings obtained as a result of the research it has completed

can improve marketing activities, improve communication results, allow an increase in

product and service purchases, and have positive effects.

An adaptive chat experience can be achieved through the language of the chatbot or by

giving the chatbot a personality, as well as by using the user models created by processing

the feedback from the users in chat. In the study completed by (Ikemoto et al. (2018)),

the suggestions presented to the users are created as a result of the previous choices of the

users. The operation is based on updating a user vector with an initial value of (0,0,...,0)

with the user’s selections. All values being zero indicates that the user’s preference is

unknown. The study stated that the user vector was updated by being triggered by the

answers to the questions asked to the user about the property and the user’s responses

to the chatbot’s suggestions. For example, in the first case, the user’s ”YES” value is



Draft of 9:52 pm, Friday, August 19, 2022 17

expressed with a positive value, while the ”NO” value is expressed with a negative value.

If the other option is ”NOT SURE” in the possible answers and the user selects this value,

the zero value is used for the user vector.

The study completed by (Ikemoto et al. (2018)) stated that when the similarity of

an item is more than the recommendation threshold, it is presented to the user as a rec-

ommendation. Of course, at this point, the item with the highest similarity is presented

as a recommendation. The recommendation threshold (alpha) determines whether the

recommendation is fulfilled, while higher values of the alpha value indicate that the rec-

ommendation is made when an item is found that matches the user’s preference. In this

case, the alpha value will be set by administering questions to the user to determine the

first alpha value.

(Amato et al. (2019)) presents a chatbot designed in the field of Cultural Heritage

Learning in order to enrich the learning experience of students. The introduced chatbot

aimed to keep the content rich by providing adaptive content. This study, which is shaped

by the conversation flow with the user and provides new content, also states that each

user can create unique chat experiences.

Instead of focusing on modeling messages and responses, research (Al-Rfou et al.

(2016)) applied modeling in a long context and a structure that would include the partici-

pant’s background. Expecting the model to make better predictions for the next message

as the conversation continues and the context grows, the study examines how dialogue

modeling is affected by the past within the conversation and the histories of the par-

ticipants’ conversations. This research, which offers a model that can personalize users’

predictions based on their opinions, interests, experiences, and writing or speaking style,

used Reddit conversations in his study. Stating that characterizing users, language, dis-

course coherence, and response diversity requires very large datasets and large models,

the study noted that users’ responses are modeled on long histories of contributions over

the years in various subforums and discussions.

The study (Al-Rfou et al. (2016)) stated that the improvement obtained by adding

the author (which may include personal history, interests, ideas, demographics, writing

style, and personality traits) and/or context (conversational history) to the base model

resulted in better performance than any of the features used alone. At this point, it can

be seen that the information recovered from each feature is different. It was also stated

in the study that using the author feature compared to the conversation history (context)

feature provides greater gains.

The study (Elsholz et al. (2019)) indicated changing the language style as an important

point in the personalization of chatbots and continued its research on adding a language

style to e-commerce chatbots to improve user satisfaction, perceived product value, user
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interest in a product and user interaction. A test process with a total of 169 participants

was applied to two chatbots that communicate in English and a Shakespearean dialect.

The evaluation results indicate that the chatbot with the Modern English language pro-

vides greater user satisfaction (easy to use), while the chatbot with the Shakespearean

dialect shows a higher value in terms of user engagement and perceived product value.

Users rated the chatbot, which communicates in a Shakespearean dialect, as more enter-

taining. The study also states that as a result of the research it has obtained, it is possible

to understand a finding that in some e-commerce environments, it may be beneficial to

accept a loss in user satisfaction to increase perceived product value and user engage-

ment. Based on all these situations, it is stated in the study that it would be promising

to conduct more studies on applications where automatic style transfer (adaptation to

users’ language styles) can be realized.

The paper (Vladova et al. (2019)), which indicates the approach to the personalization

of online courses as a growing trend in the education domain, mentions the difficulty of

collecting the necessary personal information and recommends an education chatbot that

acts as a teacher with natural language. The chatbot proposed in the study, which uses

chatbot technology to offer a dialog-based system that teaches students in a personalized

way, is associated with a database that collects, stores, and updates personal information

and data from previous learning processes during informal conversations. Presenting

the concept of “Learning Avatar” with the ability to construct a cognitive model of the

user based on user-specific data, the study states that Avatar represents the student’s

knowledge and characteristics, including socio-demographic data, personality, cognitive

model, mental models related to current learning, and culture. The study stated that

the project was in the beginning stage, and Avatar, which is updated each time the user

interacts with the chatbot, was planned as a kind of “mental model” prepared for the

individual.

2.1.3 Persona Based Personalization

The study, completed by (Ma et al. (2021)), characterizes personalized chatbots as chat-

bots with a consistent personality. This study stated that the current approaches in this

field are not practical in terms of real applications and supported this statement with

ideas such as the limited predefined user-profiles and devoid of self-renewal in the process.

The study focused on automatically teaching user profiles using large-scale user dialog

histories to avoid this limitation. In the study, a personalized language model was trained

to create a general user profile using the user’s past responses. The study proposed the

DHAP model. The study defined the concept of DHAP as Automatically learning user
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profiles from Dialogue History for personalized chatbots.

In the DHAP model proposed by (Ma et al. (2021)), the user’s past reactions represent

the user’s overall profile. This approach includes a personalized decoder. This decoder

fuses the learned user profile with the response generation process. The method proposed

in the study automatically learns the implicit user profile from the user’s past dialog

information. In the approach, two types of user profiles are created, the general user

profile and the post-aware user profile.

The study (Li et al. (2016)) studied persona-based models and defined a persona. The

study, which states that the defined persona can be seen as a combination of the user

profile, language behaviors and interaction style, also stated that the persona is adaptive.

Adaptive capability provides a different approach for different interlocutors.

The work completed by (Zhang et al. (2018)) aims to transform chit-chat into a more

interesting form. The study aimed to achieve this aim by conditioning it according to

profile information, and by introducing the concept called profile with a permanent per-

sonality consisting of textual explanation sentences, it was stated that the profile could

be used to produce more personal, consistent, specific and interesting responses than an

impersonal model. Although the trained models are trained to ask and answer questions

about personal issues, it is stated in this study that a model of the speaking partner’s

personality can be created after the dialogue obtained.

The research (Zhang et al. (2018)) presents the PERSONA-CHAT dataset (a new

dialog dataset of more than one hundred and sixty-four thousand expressions collected

through Amazon Mechanical Turk), conveys that conditioning the agent with personal

information provides a better prediction for the following dialog phrase. The study cited

that human evaluations indicated that the dataset presented in the study provides more

compelling models that can be fluid and consistent. The study also expressed its intention

that the findings obtained should be helpful for educational agents who can ask questions

about user profiles, remember answers, and use them naturally in conversation.

2.2 Rasa Framework

This study uses the open-source Rasa framework (Rasa Version:3.1.0 - Rasa SDK Ver-

sion:3.1.1) to develop a task-based chatbot. Rasa is an open-source machine learning

framework (Rasa Open Source Documentation (2022a)) that allows the generation of

conversations in human-computer interaction. Rasa Open Source uses the YAML for-

mat, which is defined as the data serialization language. The following sections it is

aimed to have information about the Rasa Framework by sharing information about the

Rasa Framework based on the (Rasa Open Source Documentation (2022a)) source before
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moving on to the application part of this report.

2.2.1 Architecture

Figure 2.8: Rasa Open Source Architecture (Rasa Open Source Documentation (2022b))

Figure 2.8 shows the flow of Rasa showing the basic steps taken during the chatbot’s

response to a message written by the user. The received message is forwarded to the

Interpreter and converted by the NLU into a dictionary containing the original text, intent,

and all the entities contained in the message. In the next step, the tracker monitors the

conversation status and ensures that the process passes to the policy with the conversation

status. Each policy determines which action will take place next. The decided action is

logged on the Tracker and the generated response is returned in response to the user’s

message.

Rasa Open Source architecture is designed on the basis of two basic components as

Natural Language Understanding (NLU) and dialog management (Rasa Open Source

Documentation (2022c)).

The NLU is the part that handles intent classification, entity extraction, and response

retrieval, shown as the NLU Pipeline, as it processes user conversations using an NLU

model created by the trained pipeline. NLU Pipeline is the part where user messages

are processed. This process performs intent classification, entity extraction, and response

retrieval processes with a trained NLU model. Dialogue Policies are the area where the

following action is decided in the conversation flow.



Draft of 9:52 pm, Friday, August 19, 2022 21

Figure 2.9: Rasa Architecture (Rasa Open Source Documentation (2022c))

Tracker Stores, referred to in figure 2.9 refers to the repository where conversations are

stored by the chatbot. Rasa architecture supports different repository types. Necessary

adjustments for repository types can be made in the ”endpoints.yml” file. This build uses

InMemoryTrackerStore (conversation history is stored in memory) by default but can be

customized for SQLTrackerStore, RedisTrackerStore, MongoTrackerStore, DynamoTrack-

erStore, and Custom Tracker Store.

Event Brokers enable the chatbot to connect to other services, enabling the processing

of data. This build can be used with Pika Event Broker, Kafka Event Broker, and SQL

Event Broker.

After the chatbot training is completed, storing the created model and keeping the

chatbot ready for use is one of the stages in the pipeline. Rasa can load the model from

the local disk to rerun the model, upload the model via HTTP server or load the model

from cloud storage.

A call locking mechanism is used to ensure that the reached messages are processed

in the correct order. Conversations are locked during this process. InMemoryLockStore

is used as the default lock store.

Rasa software development kit is a python running SDK created to run custom actions.

The Rasa action server runs the custom actions so that the specified action flows occur

at the custom action level. Rasa Actions is described in section 2.2.6. Expressing the
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conversations as a sequence of events in Rasa is effective in determining the flow of the

conversation by triggering the appropriate actions from the action server (returning the

events in these areas).

2.2.2 Training Structure

Rasa Open Source structures training data as Natural Language Understanding (NLU),

Stories, and Rules. In addition to these, Domain structure will be examined in the next

section (section 2.2.3).

2.2.2.1 Natural Language Understanding (NLU)

Making sense of user messages is one of the main points for the functioning of the chatbot.

Rasa Open Source NLU contains training data created based on user intentions. Training

data generated based on user intentions may contain attributes assigned to certain enti-

ties. As used in this study, the NLU section can perform a more comprehensive intent

classification by including Regex formulas and creating particular definitions to capture

synonymous entries.

While diversifying the training data, defining the specific words needed as entity values

with special explanations allows these words to be captured from the user input. These

values can be processed for later use in Slots and Actions. While the entities are specified

on the training data, they can be captured at a more detailed level by using roles. Creating

the training data as diverse as possible is one of the main factors that ensure an efficient

training model.

2.2.2.2 Stories

Stories are the field where possible conversations of the user and the chatbot are repre-

sented in the training data. Conversations can be routed based on entity values and slot

values. While designing a sample speech, the real-life flow is applied in this structure.

The user input (intent) and the chatbot’s response (action) follow each other throughout

a conversation, and the conversation continues. The response specified on the action can

be a response on the predefined domain, or it can be a response from the defined Custom

Action. In story design, structures such as ”control points” and ”or” structures can be

used to make the design more effective. These structures contribute to obtaining shorter

stories.
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2.2.2.3 Rules

Rules are the fixed pillars of the conversation. Rule structures are used when the same

flow is always desired. Stories and rules should be used together in harmony, as the use

of rules alone is not enough to sustain a conversation from start to finish. When rule

structures (RulePolicy) are specified under Policies, the chatbot recognizes this structure.

If the rule to be written is desired to be realized under certain conditions, the ”condition”

section should be added to the structure, and the necessary conditions must be specified

in this field before starting to write the rule. For example, the existing-user value can

be specified as ”true” as a condition. If the user is a known user, that is, if the user has

already completed their first registration, the answers to be shown to the user and the

conversation flow to be applied may be different.

2.2.3 Domain

Domain structure includes intents, entities, slots, forms, chatbot responses, and actions.

Intents defined in the NLU structure are introduced to the chatbot in this structure.

The definition of slot values and assets is carried out under the domain, and the detailed

description of slot values is also specified in this area in the structures required to fill in

their values.

2.2.4 Components

Components specify the operations to be performed on the NLU line. This structure

can be established by defining particular components as well as using featurizers, intent

classifiers, and entity extractors as components. When pre-trained language models are to

be used, these models should be defined on the ”pipeline” and used. This study uses the

”SpacyNLP” language model in the ”pipeline” of the chatbot it offers. This is explained

in detail in section 4.2.5.1. Below is brief information about other components of Rasa

Open Source.

• Tokenizers, another of the Components, parse the input into tokens.

• Another component is the Featurizer. Featurizers can output two different types of

properties, sequence properties, and sentence properties, by creating a vector rep-

resentation of the user message and response. Rasa Open Source supports different

kinds of Featurizers, providing options to complete the creation of features for asset

extraction, intent classification, and response classification through these builds.
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• Intent classifiers ensure that the user message matches the appropriate one of the

predefined intents. The Dual Intent Entity Transformer (DIET) can be used for

both intent classification and entity extraction, while intent classifiers usually return

”intent” as expected.

• Entity extractors are responsible for extracting entities from user messages. On

the other hand, EntitySynonymMapper enables synonyms of entity values to be

recognized and extracted on user inputs.

2.2.5 Policies

The Rasa framework uses policies to determine what action to take at each step during

the dialogue. The developed chatbot will predict the next action according to the selected

principles. Policies should be included in the project by paying attention to the needs

and requirements of the chatbot. Below are sample policies and brief information about

them.

• The Transformer Embedding Dialogue Policy architecture is a multitasking archi-

tecture for action prediction and entity identification to be applied after the conver-

sation.

• The UnexpecTED Intent Policy is offered as an experimental option at the time

of this project. No action will be triggered if the intent predicted by the NLU

is actually likely to happen, but otherwise UnexpectTEDIntentPolicy will trigger

action unlikely intent.

• The Memoization Policy checks if the stories in the story.yml file match the conver-

sation to predict the next action.

• The AugmentedMemoizationPolicy works like MemoizationPolicy. Additionally, it

forgets a certain number of conversation history steps and works to match stories

with conversation history whic is reduced.

• The RulePolicy makes predictions based on rules created in the training data.

2.2.6 Actions

During the conversation process with the chatbot, each user input triggers an action to

take place. Actions to be returned as a response to the user can be a response expression

defined under the Domain, or they can be returned to the user through an action defined
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as a Custom Action. Custom Actions also support additional operations such as instant

database queries, API calls, or sending data to the database.

2.3 Summary

In this section, the literature review on task-based chatbots is completed. This chapter

then focused on personalized task-based chatbots and focused the literature review on

this specific area. In the final part of the chapter, information about the Rasa framework

is given.



Chapter 3

Methods & Design

This chapter examines how the project implemented and developed in this thesis was

designed and the approaches implemented. This part includes examples from training

data and aims to provide a clearer understanding of the approaches applied during the

project development.

3.1 Project Goal Overview

This project aims to develop a task-based chatbot in the context of car rental. The chatbot

aims to provide customized adaptive replies based on chat progress and conversation

history.

3.2 Overview of Approach

The beginning of the project is based on the determination of suitable libraries, frame-

works, and development environments and requirements. This process determines the

training data on which the application will be established. In this study, ready-made

data sets were not used. The study created its own training dataset. The study created

its own answers and data for frequently asked questions about car rental prices and the

car rental process in practice, using the research done on the web.

3.3 Architecture Design

The architectural design of the chatbot is based on the architecture of the Rasa framework

in figure 2.9 and 2.8. Rasa Open Source/Agent layer is the part where NLU operations

take place. Detailed explanation of this part is provided in section 2.9. Rasa SDK layer is

26
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Figure 3.1: Architecture

the part that executes actions with Action Server. In addition, this part is the structure

that connects the cloud database and the whole system. The user interface and the chatbot

system are linked by channel connectors. The component called External Component is

the structure(for example, a framework) used in the creation of the web interface. These

parts are explained in section 4.4.

3.4 Generating Training Data

A total of 20 different intent classes, 13 different entity values, 13 different slot values, 357

example user input data, 39 response statements, and four different synonym mappings

were used in the project. The project, which includes 11 Different Custom Actions, also

has 20 different vehicles in its cloud database. In the following subsections, the design

processes of the training data are explained in more detail.

3.4.1 Generating NLU Data

NLU data is the part where user inputs are actually introduced/taught to the chatbot.

While defining the training data here, it has been detailed with entities so that the

meaning to be obtained from user inputs has been transformed into a more effective form.

For example, the user’s question in the table 3.1 does not contain any entity or slot values.
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Therefore, the intent class for this question in the nlu.yml file only contains different ways

of asking the same question.

Sentence Slot/Entity Value
At the end of the rental,

should I deliver the vehicle with a full fuel tank?
- -

Table 3.1: Example training data without any slot/entity

The following example is for forms where the user input contains some kind of enti-

ty/slot value. The user can specify the type of the vehicle he/she wants to rent, in this

case the specified vehicle type is recognized and the asset values are filled.

Sentence Slot/Entity Value
I want to rent a

[standard]{”entity”:”vehicle type”} type car.
vehicle type standard

Table 3.2: Example training data with one slot/entity

The following example shows a user input containing two different types of entities.

By adding this input to the training data, what the chatbot should do when it encounters

such input was determined during the development process of the chatbot, and the next

actions were specified.

Sentence Slot/Entity Value
I want to rent an

[electric]{”entity”: ”fuel type”} [BMW]{”entity”: ”brand”}.
vehicle type standard

brand BMW

Table 3.3: Example training data with two slots/entities

The training data example in Figure 3.4 is an example for situations where role struc-

ture is involved in the process.

Sentence Entity Role Slot Value
between [05/09/2022]{”entity”: ”date”, ”role”: ”start”}

to [24/11/2022]{”entity”: ”date”, ”role”: ”end”}
date start dateStart 05/09/2022
date end dateEnd 24/11/2022

Table 3.4: Example training data for dates
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3.4.2 Writing the Stories

It is essential to consider all kinds of scenarios when designing stories. Although we

strengthen the stories with the rules, teaching the model the possible dialogues that the

users will establish with the chatbot in advance enables a more successful model to be

reached. While creating the stories, the central storylines were created first. The main

storylines are that the user directly goes to rent a car, or the user has requests directly

related to frequently asked questions.

3.4.3 Setting the Rules

Rules solidify the stories that are created and ensure that everything is created in a

uniform order. In addition, the rules are the areas where the mechanisms that are desired

to work under all conditions are specified. Before the rules were created in the project,

first of all, the areas that should work under all conditions were determined. For example,

actions that will take place after the user says hello to the system or says thank you. The

point to be considered while developing the rules is to determine under which conditions

the rule should be triggered.

3.5 Responses

While designing the answers of the chatbot, it is crucial that the answers that support

all kinds of scenarios are determined. While designing the language of the generally

determined answers of the chatbot presented in this project, the use of a language that

is neither too formal nor too friendly was avoided. At this point, a balanced attitude

is aimed. In most cases, the conversation flows that the chatbot will perform can be

expected to occur within predetermined patterns. But there are different points to focus

on when a chatbot is expected to provide adaptive answers, and a personalized experience

is expected for each user. Adaptive flows will be discussed further in the section 3.8 in

addition to this section.

In order to provide a personalized chat experience in the chatbot presented in this

study, personalized chat content is provided on the basis of users. The presented chatbot

is task-based, so the working context is focused on car rental. The vehicle preferences

specified by the users during the conversation with the chatbot are captured in the natural

language processing structure and processed in the actions section. In the user’s subse-

quent car rental request, the chatbot presents the user’s favorite type of vehicle to the user

in the first section. The chatbot, which recognizes the user, also changes the conversation

flow and directs the user to select the vehicle directly after the date selection. The daily
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rental prices of the vehicles that the user will encounter after the vehicle selection are

calculated on the basis of the user, and each user is presented individually. The main

factor in calculating the prices on a per-user basis depends on how many different car

rentals the user has previously completed through the chat robot. This part is explained

in more detail in section 3.8.

Since adaptive answers are determined according to the flow during the conversation,

it is essential at this point to determine which answers the user can give at which point.

In order to ensure that all possibilities are provided, in addition to the default response

structure, it prevents the conversation flow from being disrupted in a scenario beyond the

typical situations, but the negative contribution of this situation to the user experience

should also be taken into account. In this project, the default answers produced for

the entire speech flow are designed separately for each speech part and are included in

the conversation when the user’s inputs are not understood. Thus, it is aimed to make

the chat experience more compelling by preventing users from seeing uniform answers in

specific situations. For example, if the user uses an expression that the chatbot cannot

understand while chatting about frequently asked questions, the chatbot will offer options

to assist the user with frequently asked questions.

Finally, a point that should be mentioned is that the answers provided by the chatbot

after the expressions that the users enter into the chatbot also form a mechanism that

determines how the conversation will be directed. In this case, the answers and directions

offered to the user are as crucial as language understanding in maintaining the speech

under control.

3.6 Fast Access Code

Fast Access Code is a concept that will be encountered frequently in this project. User

definitions in this thesis are provided through this unique code generated virtually. The

code follows a certain format. The format and rule structure created for the Fast Access

Code are as follows.

• Fast Access Code consists of 8 characters in total.

• The fourth character of the code always contains ”#”.

• It is randomly generated from a combination of the remaining characters (first three

characters and last four characters) and both alphabetic and numeric expressions.

The reason for choosing a specially designed code format for Fast Access Code is

to ensure that the code can be recognized successfully in interactions with the chatbot.
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With the RegexEntityExtractor structure integrated into the chat robot in the project,

the regex rule that defines the code snippet is provided to process user inputs.

3.7 Database

The areas where data is stored are based on two different essential collections: vehicles

and users. The user collection is the area where users are associated with a virtually

generated unique identifier (this identifier is called the ”fast access code” in the project).

Thanks to this code created virtually, user identification in the database is carried out

through the virtual profile without requesting or storing any personal data of the users.

The collection of vehicles is the area where vehicle features and information are kept for

rental vehicles. The database in the NoSQL structure is kept on MongoDB.

Figure 3.2: Representation of database fields

The user identifier field, which identifies users in profiles created virtually for users,

is the area where fast access code is stored. Also, as seen in figure 3.2, the ” id” field
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defined by MongoDB is also preserved. The user identifier area is used in the identification

processes in the project.

After users complete their car rental transactions, the identifiers (vehicle identifier) of

the rented vehicles are stored in the rented vehicles array. By creating this structure in

array format, it is aimed that users can keep more than one contamination process. Array

updates itself after each rental.

Each vehicle defined by users on the system is mapped to a vehicle type. The vehicles

that will be offered to the users after the first vehicle rental in the system are kept based

on vehicle type. A ”rented vehicle type” field has been created in the user collection for

faster access to the types of vehicles they have previously rented (in order not to return

the ”vehicle identifier” of the previously rented vehicles again and again).

The explanations of other parts of the user collection are as follows.

• The total number of vehicles previously rented by the user is stored in the ”num-

ber of rented vehicles” field on the collection.

• The discount rate defined specifically for the user is stored in the ”discount rate”

field. Calculating the discount rate is described in section 3.8.

• The user’s favorite vehicle type is stored in the ”favorite vehicle type” field. Possible

scenarios for determining favorite vehicle types are discussed in section 3.8.

• The ”lats login date” field has been created to recognize the user’s interaction with

the chatbot after registering in the system.

• As a consequence of the user’s interaction with the chatbot, the fast access code of

the chatbot is kept in the ”date created” field for the user.

The ”date created” and ”lats login date” fields have no direct effect on the functioning

of the chatbot. These areas can be used in conjunction with other areas to provide the

basis for meaningful data analysis. The project will discuss the analysis of this area for

future studies in section 6.3. Thanks to these fields created, the user model is built, and

the user model is included in the conversation flows that the chatbot will present.

In addition to the ” id” field defined by MongoDB, the collection where the information

about the vehicles is kept includes a unique id field called ”vehicle identifier”. This id

field is a 4-digit integer, and it is unique in the collection for each vehicle. Other fields in

the collection of vehicles are as follows:

• The brand of the vehicle is stored in the field named ”brand”.

• The vehicle model is stored in the collection area named ”model”.
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• The gear type of the vehicle is stored in the field named ”transmission type”.

• The vehicle type is stored in the area called ”type”.

• The fuel type of the vehicle is stored in the field named ”fuel type”.

• The rental fee of the vehicle is stored in the ”price” field, representing the daily

price.

• When the user completes the rental process in conversation with the chatbot, the

chatbot shows the user a picture of the rented vehicle. This picture is kept in the

link in the ”image” field on the collection.

• When the car rental process is completed, the chat robot sends the user a link to the

official website of the vehicle that belongs to the rented vehicle. The purpose here

is to enable the user to access more detailed information about the rented vehicle.

The official link of the vehicle’s manufacturer is stored in the ”link” field on the

collection.

These fields in the database are managed by the actions file on the project. Section 4

explains this area in detail.

3.8 Adaptive Flows

This structure’s development aims to increase the user’s experience with the chat robot.

The developed chatbots does not always give the same response to the user inputs it

encounters. The figure 3.3 shows the operation behind different rules for the same user

input, with an example from the project.

Figure 3.3 shows how the flow of the process changes adaptively from user to user,

despite the same input from the user. At this point, the variable part is not only the

dialog flow but also the answer content produced at the end of the dialogue. That is, the

part where the vehicle recommendations are presented varies specifically for each user.

Users must first complete the first car rental process to see the car recommendations

the chatbot recommends for them. After the first car rental, when the user states that

he/she wants to rent a car to the chatbot, the chatbot recognizes the user and makes

recommendations to the user according to the most recent car type that the user has

rented. During the chat, each user sees recommendations based on their preferences from

previous chats, giving them a different experience than a traditional rental process.

The different experience obtained at this point is not only limited to the fact that the

vehicle recommendations differ from user to user but also that the car rental price offered
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Figure 3.3: An example of adaptive flow from the presented chatbot

for each user is variable on a user basis. The chatbot will show more affordable prices to

its users who rent more cars than it does during the rental. The necessary condition here

is that the user has previously completed a car rental and specified the fast access code

to the chatbot. The chatbot provides users with a 5% discount per rental. Each user can

get a maximum of 30% discount, which means that a fixed discount of 30% is applied

after 6 car rentals are completed.

Another part of the chatbot where answers are produced adaptively is the user’s

creation of an input that indicates an intention different from the expected intentions. In

this case, instead of creating a fixed answer of ”Sorry, I don’t quite understand this”, the

chatbot will be based on the topic of the current conversation and pass on topic-specific

alerts to the user. For instance, if the user is interested in frequently asked questions

and the text which is written by the user is not related to frequently asked questions, the

chatbot offers to look at the frequently asked questions for the user. The critical point

here is that the chatbot offers its own suggestions in the face of messages written outside

the context of car rental. For example, the user can instantly specify the car rental request

in the section where the user is interested in the frequently asked questions, or the user

can instantly review the frequently asked questions while renting a car. This approach is

advancing adaptively in all areas of the chatbot.

3.9 Use Case Scenarios

This section expresses the situations that indicate the dialogues to be established between

the user and the chatbot with different use-cases. Under this heading in the report,

Use-cases of basic processes (car rental and answering frequently asked questions) are

presented. Other scenarios that may occur will be described in Appendix A.
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Use Case Name Initial Fast Access Code: None
Use Case Overview This use-case occurred when the user did not have the fast access code before.

Actor User
Trigger User does not have fast access code. Indicates this status to the chatbot.

Precondition 1
The user says that he/she wants to rent a car and then states that they do not have
fast access code.

Basic Flow

The user implies that he/she wants to rent a car.

Chatbot asks for date information.

User indicates dates to rent a car.

Chatbot asks the user if he/she has a fast access code.

User states that he/she does not have the code.

The chatbot generates a fast access code for the user and asks the user what kind of vehicle they want to rent.

The user specifies the features of the vehicle they want to rent.

The chatbot lists the vehicles that the user wants.

The user completes the rental process for the vehicle selected from the list and leaves the chat.

Alternate Flow

The user tells the chatbot that he/she has questions about the rental process.

The chatbot waits for the user’s question.

The user asks the chatbot his/her question about renting a car.

The chatbot answers the user’s question and asks if they have any more questions.

The user implies that he/she wants to rent a car.

Chatbot asks for date information.

User indicates dates to rent a car.

Chatbot asks the user if he/she has a fast access code.

User states that he/she does not have the code.

The chatbot generates a fast access code for the user and asks the user what kind of vehicle they want to rent.

The user specifies the features of the vehicle they want to rent.

The chatbot lists the vehicles that the user wants.

The user completes the rental process for the vehicle selected from the list and leaves the chat.

Table 3.5: Basic (Initial Dialogue - without fast access code) use-case for the car rental
process

The use-case occurs when the user does not have a fac and wants to rent a car. As

you can see, this scenario can ensue at the beginning of the conversation or after talking

to the user about frequently asked questions.

The use-case expressed in the table 3.6 occurs when the user has fast access code (fac).

If the user is a recognized user for the chatbot, the chatbot offers user-specific content in

the conversation stream.

The use-case 3.7 occurs when the user has questions about renting a car. Other use-

case flows are added to the report in the Appendix A section.
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Use Case Name Car rental when the user already has the code
Use Case Overview This use-case occurred when the user had the fast access code before.

Actor User
Trigger The user says that he/she wants to rent a car and then states that they have the fast access code.

Precondition 1 The user has a fast access code and indicates this status to the chatbot.

Basic Flow

The user implies that he/she wants to rent a car.

Chatbot asks for date information.

User indicates dates to rent a car.

Chatbot asks the user if he/she has a fast access code.

User states that he/she has the code.

The chatbot requests the user’s fac.

The user writes the fac.

The chatbot asks the user what features a vehicle they want.

The user specifies the features of the vehicle they want to rent.

The chatbot lists the vehicles that the user wants.

The user completes the rental process for the vehicle selected from the list and leaves the chat.

Alternate Flow

The user tells the chatbot that he/she has questions about the rental process.

The chatbot waits for the user’s question.

The user asks the chatbot his/her question about renting a car.

The chatbot answers the user’s question and asks if they have any more questions.

The user implies that he/she wants to rent a car.

Chatbot asks for date information.

User indicates dates to rent a car.

Chatbot asks the user if he/she has a fast access code.

User states that he/she has the code.

The chatbot requests the user’s fac.

The user writes the fac.

The chatbot asks the user what features a vehicle they want.

The user specifies the features of the vehicle they want to rent.

The chatbot lists the vehicles that the user wants.

The user completes the rental process for the vehicle selected from the list and leaves the chat.

Table 3.6: Basic (Initial Dialogue - with fast access code) use-case for the car rental
process
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Use Case Name Answering frequently asked questions
Use Case Overview This use-case specifies the basic flow that is followed when users have questions about the car rental process.

Actor User
Trigger The user tells the chatbot that he/she has questions about the car rental process.

Precondition 1 It is sufficient to trigger this use-case.

Basic Flow

The user tells the chatbot that he/she has questions about the rental process.

The chatbot waits for the user’s question.

The user asks the chatbot his/her question about renting a car.

The chatbot answers the user’s question and asks if they have any more questions.

The user says he/she has a question and this loop repeats.

Alternate Flow

The user tells the chatbot that he/she has questions about the rental process.

The chatbot waits for the user’s question.

The user asks the chatbot his/her question about renting a car.

The chatbot answers the user’s question and asks if they have any more questions.

The user implies that he/she doesn’t have any more question.

Table 3.7: The basic use-case for the FAQs.

3.10 Evaluation Questionnaire

A questionnaire was designed to measure the user experience of the chatbot in terms of

user satisfaction, to evaluate the performance of the chatbot by associating it with the

user experience provided by the chatbot, and to learn the general attitude of the users

about the chatbots. The designed questionnaire is detailed and presented in section 5.3.

3.11 Summary

In this section, the decision stages and design approaches in the foundation process of

the thesis are explained. In addition, use-cases were defined, and flows were created to

represent all possible scenarios on the chatbot.



Chapter 4

Implementation

This section contains explanations and details about the development process of the chat-

bot in a segmented approach. This section also presents examples of conversations that

demonstrate the adaptive/personalized chat experience offered by the chatbot via screen-

shots taken from the chatbot. The chatbot’s basic and completed conversation flows are

included in the report in Appendix B.

4.1 Overview of Development Environment

The development process of the project is based on the cooperation of different com-

ponents. The development platforms/environments in the table below were used in the

specified versions in this project, where the project was developed locally and run in the

cloud environment, and the chat was managed together with a concerning database.

Rasa Version 3.1.0
Rasa SDK Version 3.1.1
Python Version 3.8.13
Cloud Database MongoDB

Operating Systems Linux Ubuntu 20.04.1 LTS / Windows 10

Table 4.1: Development Environments

The Rasa framework mentioned above needs many different python libraries to work

in its full form. During the Rasa framework installation, these packages are installed

together with the versions required for the framework to work. In addition to all these,

this project offers an active dialogue flow with the database. The project’s database

connections and detailed information in this area will be explained in section 4.3.

38
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4.2 Chatbot Implementation

The development of the chatbot has been completed in a modular structure in itself. It

is aimed to explain the code blocks of the basic parts of the project in this section.

4.2.1 Actions

The Actions section contains python-built class structures and python functions. The

project is based on a wide variety of functions and classes to increase chatbot and user

interaction. In this section, the custom actions of the project, which are included in the

main dialogs, will be examined with example code blocks.

4.2.1.1 Generate FAC

Indicating that the user does not have a fast access code (FAC) during the dialogue

triggers the ”action generate fast access code” action. This triggered action is conveyed

in the code block below.

1 class ActionGenerateFastAccessCode(Action):

2

3 def name(self) -> Text:

4 return "action_generate_fast_access_code"

5

6 def run(self , dispatcher: CollectingDispatcher ,

7 tracker: Tracker ,

8 domain: Dict[Text , Any]) -> List[Dict[Text , Any ]]:

9

10 generated_id=generate_id ()

11 dispatcher.utter_message(response = "

utter_creating_fast_access_code_info")

12 dispatcher.utter_message(text=f"Here’s your Fast Access Code: {

generated_id}")

13

14 return [SlotSet("user_identifier", generated_id), SlotSet("

user_identifier_is_know", True)]

Listing 4.1: FAC Creation

As you can see, the code block 4.1 also uses a function called ”generate id”. This

function is the part where the fast access code is created after certain rules and controls.

This function also enables the creation of fields belonging to the user collection in the

database. Therefore, the explanation of this code is in the code block 4.7 in the database

section 4.3.
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4.2.1.2 Vehicle Selection

After the intent named typeOfVehicle, which is the intent in which the user defines the

vehicle they want to rent, the action class named ”action selectedVehicles” runs. This

action class has quite a long code flow. The code block 4.2 shows only a portion of

the code flow for this class. Although the entire code stream functions similarly to the

specified code block, there are some fundamental differences. The code block 4.2 belonged

to the code block that was active only when the user specified his request for fuel type

and vehicle type.

1 query ={"type":vehicle_type ,"fuel_type":fuel_type}

2 docs=vehicles_collection.find(query)

3 buttonList =[]

4 for i in docs:

5 brand=i["brand"]

6 vehicle_identifier=i["vehicle_identifier"]

7 model=i["model"]

8 transmission=i["transmission_type"]

9 price=i["price"]

10 price_=float(price)-(float(price)*float(discount_rate))

11 price_=str(price_)

12 text=brand+" "+model+" | "+transmission+" Transmission "+price_+"$/
day" + " | Vehicle Code: " + str(vehicle_identifier)

13 text_payload="I chose the car with the vehicle code "+str(

vehicle_identifier)

14 element ={"payload": text_payload , "title": text}

15 buttonList.append(element)

16 print(text)

Listing 4.2: Vehicle Selection

After the vehicle features specified by the user are captured with the intent defined on

the NLU, they are converted into a query in the actions section. The resulting query is run

on the database, and the outputs are processed and converted into a form suitable for the

chat dialog. The resulting printouts include vehicle information and price information,

and this information is presented to the user in a button-shaped dialog that the user can

select during the chat.

4.2.2 Intents

The process of making sense of users’ input begins with the creation of intents. User

inputs are used in dialogues at all levels in this project. In other words, the working

system of the buttons has been developed as user input instead of calling the automatic
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intent through the buttons supported by the Rasa framework. This approach shows that

every stage of the dialogue is based on NLU processes. Below, we can see how the code

is captured when the user specifies the FAC through the sample code block. Although

there are different sample dialog entries for this intent, it has been added to the report as

follows.

1 nlu:

2 − regex : u s e r i d e n t i f i e r

3 examples: |
4 - [ a−zA−Z0−9]{3}#[a−zA−Z0−9]{4}
5 − i n t en t : w r i t e u s e r i d e n t i f i e r

6 examples: |
7 - my f a s t a c c e s s code i s [ l a8#2j c3 ] ( u s e r i d e n t i f i e r )

Listing 4.3: Capturing of the fast access code

Code block 4.3 has an example of capturing values using regex. Using regex to recog-

nize inputs in a particular pattern, as in this example, provides an efficient process flow.

DIETClassifier is another structure that makes sense of entity values and inputs used in

this project.

4.2.3 Entities and Slots

Entities and slots are value holders defined under the domain. The continuity and con-

ditions of the developed dialog flows are related to the values of the slot values. In

other words, the orientation of the slot values is one of the essential factors in adaptively

changing speech flows.

Below are sample code blocks where entities and slots are defined. Slots can get their

values through defined assets. A total of 13 different slot values are defined in this thesis.

As an example, defining a slot value is shown in the code block 4.4.

1 s l o t s :

2 ca r r en ta l c omp l e t ed :

3 type: bool

4 i n f l u e n c e c onv e r s a t i o n : t rue

5 i n i t i a l v a l u e : f a l s e

6 mappings:

7 - type: f r om ent i ty

8 en t i t y : c a r r en ta l c omp l e t ed

Listing 4.4: Initialization of Slots
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The slot value defined stores whether the user’s car rental reservation has been suc-

cessfully completed.

A total of 13 different entity values are defined in this thesis. Example entity definitions

are shown in the code block below.

1 e n t i t i e s :

2 − date

3 − u s e r i d e n t i f i e r i s k n ow

4 − ca r r en ta l c omp l e t ed

Listing 4.5: Initialization of Date Entity

Defined entities can be used to feed slot values as seen in code block 4.4.

4.2.4 Responses

This section contains the pre-made answers used by the chatbot. The responses of the

chatbot are defined under the domain and action file.

1 r e sponse s :

2 ut te r a sk fo rOtherQues t i on :

3 - t ex t : "Is there anything else I can help with?"

4 ut te r wa i tQues t i on :

5 - t ex t : "Could you please tell me your question?"

6 u t t e r s a yby e s p e c i a l :

7 - t ex t : "It was a pleasure helping you. Hope to see you again,

goodbye"

Listing 4.6: Responses

Emojis (Emojipedia (2022)) were also used in addition to texts in some replies so

that users could have a more intimate speaking experience when reading the chatbot’s

responses.

4.2.5 Components and Policies

The spacyNLP language model is used in the developed chat robot. This language model is

detailed in section 4.2.5.1. While SpacyTokenizer, which is offered as Tokenizer by Spacy,

is used, SpacyFeaturizer is included in the process as Featurizer. In addition, CountVec-

torsFeaturizer, LexicalSyntacticFeaturizer, and RegexFeaturizer are also included in the

process. In the presented chatbot, DIETClassifier, and FallbackClassifier are used as clas-

sifiers, and DIETClassifier also functions as entity extractors. There is a point to be noted
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in the entity extractors section where RegexEntityExtractor is also included in the pro-

cess. This is important to be aware of as using DIETClassifier and RegexEntityExtractor

together can result in multiple extractions of entities. In the project where EntitySyn-

onymMapper is used, ResponseSelector is used as Selector. Finally, MemoizationPolicy,

UnexpecTEDIntentPolicy, TEDPolicy, and RulePolicy were used as policy in the project.

4.2.5.1 Language Models

While developing the chatbot presented in this study, pre-trained word vectors were used.

For this, a natural language library spacy (spaCy (2022)) is used. The spacyNLP included

in the Pipeline is used with the ”en core web md” language model. The ”en core web md”

model has better accuracy values than the ”en core web sm” model, but has a smaller

size than the ”en core web lg” model (spaCy Trained Pipelines (2022)). This makes the

”en core web md” model one of the selectable models for achieving a balance of accuracy

and efficiency.

The ”case sensitive” parameter was applied as ”False” when configuring this language

model. This is because in our chatbot streams, capitalizing or lowering the user’s typing

has no decisive impact on streams and assets. The fields with case sensitivity are processed

in the ”actions” section and converted into the required form. For example, after the

parts in which the user specifies the vehicle brands and fuel type are separated, they

are converted into a form with the first letter capitalized because the ”actions” part is

intended to work in a suitable form with the database. In this section, it is possible to

apply different approaches, such as processing all database content in lowercase in the

”actions” section.

4.3 Database

Another factor that determines the flow of the chatbot is the values kept in the database.

The system first creates the collection fields for the user. Each userspace group is created

with a unique fast access code. The code block 4.7 added to the report represents the

code lines (test lines were removed while adding the code block to the report) for these

operations. The first part of the code block added below is the part where this descriptive

code is created.

1 def generate_id ():

2 rnd1=random.choices(string.ascii_lowercase+string.ascii_uppercase+

string.digits ,k=3)

3 rnd1=str(’’.join(rnd1))
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4 rnd2=random.choices(string.ascii_lowercase+string.ascii_uppercase+

string.digits ,k=4)

5 rnd2=str(’’.join(rnd2))

6 final_rnd=rnd1+"#"+rnd2

7

8 user_identifier_list=update_userList(client_)

9

10 if not check_id(final_rnd ,user_identifier_list):

11 currentDateTime = datetime.datetime.now()

12 currentDateTime_=currentDateTime.strftime("%d/%m/%Y %H:%M:%S")

13 dict = { "user_identifier": final_rnd ,

14 "rented_vehicles":[],

15 "rented_vehicle_type":[],

16 "number_of_rented_vehicles":0,

17 "discount_rate":0,

18 "favorite_vehicle_type":"",

19 "last_login_date": "",

20 "date_created": currentDateTime_ }

21 users_collection=return_userCollection(client_)

22 newDoc = users_collection.insert_one(dict)

23 return final_rnd

24 else:

25 generate_id ()

Listing 4.7: Creation of FAC and user collection fields

After making sure that the unique code that is created and brought to the desired for-

mat has not been produced before, the collection fields and FAC are matched to each other,

and the procedure of adding new data to the collection is completed. The ”check id()”

function scans the FACs in the user collection. If the generated FAC is registered to

the system before, the function calls itself again and works recursively, and when a code

that has not been generated before is obtained, the creation of the collection areas is

completed. This process allows the user model to be defined on the database. The next

processes (renting a car, etc.) continue by updating these user-owned fields depending on

the user’s choices.

4.4 Deployment to the Web

The processes in the following subsections have been applied for the public access of the

users to the developed chatbot.
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4.4.1 Setting the Channel Connector

REST and SocketIO channels are defined in the project. In this way, host and port

numbers can be used, and the chatbot can be contacted.

4.4.2 Setting the Virtual Machine

An instance has been created on Google Cloud (Google Cloud (2022)) to run the chatbot

on the virtual machine. The built virtual machine is configured to have a total of 60

GB of storage space. After the necessary library installations were made on the virtual

machine, the developed chatbot was run on the virtual machine.

4.4.3 Web Interface

After the development of the chatbot was completed, it was shared with the users via

the web interface to ensure interaction with the users. While designing the interface,

the Bootstrap (Bootstrap (2022)) framework was used. The designed responsive interface

allows users to use the chatbot from all devices.

4.5 Adaptive Flows

The chatbot, which has been completed up to this stage, has gained a structure that will

present adaptive and personal content. An adaptive and personalized chat experience has

been implemented in different areas of the chatbot. In this section, the narrations will be

supported by the screenshots taken while continuing the conversation with the chatbot.

While evaluating the user’s car rental requests during the conversation, the chatbot

uses the values in the user model. As a result, personalized response contents and speech

flows are obtained. As can be seen in the Figure 4.1, although the requests of 2 different

users are the same, the reply content produced by the chatbot is different for the users.
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Figure 4.1: Adaptive Price Determination During Conversation

Figure 4.2 refers to the flows that occur when the user’s messages cannot be understood

by the chatbot (a classification below the specified threshold may cause this situation).

In the context of car rental, the user specifying a message outside of a topic and expected

flows requires the chatbot to perform some additional actions. Although it is one of the

usual approaches to ask the user to rewrite his message regardless of the current topic of

the conversation in such cases, the chatbot developed in this study provides a solution to

this situation with a different approach. The developed chat robot gives feedback based

on the current state of the conversation in the face of expressions that it cannot make

sense of with a robust classification. As seen in Figure 4.2, if the user enters a message

that the chatbot does not understand while talking about questions about renting a car,

the chatbot aims to continue the conversation more effectively by suggesting frequently

asked questions to the user. In another example, when the user writes a message that is

out of context during the vehicle selection phase, it triggers the chatbot to make its own

suggestions. The chatbot offers some category suggestions based on the types of vehicles

found in the database to assist the user in choosing.
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Figure 4.2: Customised Fallback Management

Users can end the conversation at any time of the flow, or they can write a statement

on the chatbot that they do not want to continue in response to the stream that the

chatbot wants to present. The presented chatbot responds to this request of users based

on conversation history. Example speech flows illustrating this situation are presented in

Figure 4.3. When the chatbot knows that the user has completed the car rental process,

it sends a more detailed farewell message to the user, while in other cases, it says goodbye

differently.
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Figure 4.3: Adaptive responses for ending the chat

When users say they want to rent a car again while they are in a conversation flow

where they have rented a car before, the chatbot will offer suggestions created specifically

for the user. Conversation flows showing this situation can be seen in the Figure 4.4. Al-

though the user message is ”I want to rent a car” in both streams seen in the figure, the

vehicle suggestions shown are different. In addition, the daily fees of the recommended

vehicles are calculated on a user basis and displayed to the user. This indicates that even

if the same vehicles are offered for different users, the daily rental prices of the recom-

mended vehicles may differ.
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Figure 4.4: Vehicle recommendation on a per-user basis

After the users indicate that they have the fast access code, the chatbot asks the user

to type the fast access code they have. Conversations representing this flow are exempli-

fied in Figure 4.5. After the user writes a fast access code, the chat robot searches the

database for the specified code and prepares vehicle suggestions based on the user’s data

for the match it finds. Another point that should be known at this point is that after the

vehicles to be suggested according to the values in the user model are drawn from the

cloud database of the chatbot, the daily rental fee is determined based on the user and

translated into a form appropriate to the response format.
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Figure 4.5: Vehicle recommendation on a per-user basis (by specifying the FAC)

4.6 Incorrect Information Entry Management

The previous paragraphs explained how the chatbot reacts to unintelligible user input.

When the information entered by the user in the date field and the fast access code

field contains incorrect data, the chatbot behaves with a different approach and behaves

specifically to these fields. This situation is presented in Figure 4.6 on 2 sample speech

streams. A method has been developed that processes the date information entered on

the back of the chatbot. This method takes the current date information instantly and

compares it with the date information entered by the user. If the entered date is an

expired date, the chatbot prompts the user to recheck this status by creating a warning.

Another situation is the evaluation of the accuracy of the entered dates in themselves.

The end date of the rental period may be equal to the beginning of the rental period or
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Figure 4.6: Incorrect entries management

maybe a later date. If a date information pair is specified that breaks this status, the

chatbot will catch it and generate a warning for the user.

4.7 Summary

This section describes the critical components used/created during the development of

the chatbot. The modular development approach followed during the development of

the chatbot not only provided easier process management during development but also

provided a more conscious intervention to the errors encountered.



Chapter 5

Evaluation

This section explains the approaches applied in the evaluation process of the chatbot

developed and presented in this thesis. The foremost section will provide an overview

of assessment approaches. The following section details the evaluation approach and

evaluation result for Intent Classification. This study designed a survey to share with real

users to measure the overall performance and user experience of the chatbot. The section

after the evaluation about the intent classification has completed the section where all

the information about the survey study is shared in sections. The final section, which is

called ”Summary”, gives an overview of the entire evaluation section.

5.1 Evaluation Overview

The evaluation part can be examined in two parts. The first evaluation approach applied

is a test process that measures the success of intent classification, which also provides

information about the quality of the chatbot’s training data. The second evaluation

approach is a survey study based on real user tests that measure the user experience of

the presented chatbot in terms of user satisfaction.

In order to understand how well the presented chatbot performs the intent classifica-

tions, a test phase was implemented on the chatbot.

For the user experience evaluation of the developed chatbot in terms of user satis-

faction, a survey study based on real user tests was prepared. Participants are expected

to start this survey after completing their chatbot experience and complete the survey

based on their chat experience. It is known that the outputs of this survey, which will be

completed by users, are essential in terms of understanding how the task-based chatbot

presented in this report creates an impression on the user’s side. This evaluation process

also aimed to provide a glimpse into the positive/negative contribution of a personalized

experience to the overall experience users get from chatbots.

52
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5.2 Evaluation for Intent Classification

In order to evaluate how successfully the intent classifications of the chatbot developed

in this study work, the evaluation results in Figures 5.1 and 5.2 were obtained by using

the test mechanism provided by Rasa Open Source.

Figure 5.1: Confusion Matrix for Intent Classification

Figure 5.1 is the confusion matrix created according to the results of the intent clas-

sification evaluation. The horizontal row contains predicted intents, while the vertical
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column contains actual intents/true labels. In a successful classification, it is expected

that the confusion matrix should be arranged diagonally. This indicates that the classifi-

cation to which each objective corresponds has resulted correctly. As seen in the Figure

5.1, each intent matched with its corresponding intent, and the whole matrix moved on

the diagonal. This completed evaluation shows that intent classification works success-

fully on the presented chatbot. In addition, the presence of different color tones can be

seen on the confusion matrix. An intent with a darker hue was supported by more sample

input than an intent with a lighter hue. We can also observe this situation by comparing

the values on the diagonal.

Figure 5.2: Confidence Distribution for Intent Prediction

In Figure 5.2 above, we can see the confidence values for correct and wrong intent

classifications on the histogram. Correct predictions are represented by blue bars and

losses by red bars. As can be seen, the intent classification operates successfully.

5.3 Questionnaire

The designed questionnaire consists of 24 different expressions in total. The first 12 of

these statements contain positive statements, while the last 12 include negative state-

ments. For all the expressions presented, five different evaluation scales(5-point Lik-

ert scale(Likert (1932))) are presented, namely ”Strongly Disagree”, ”Disagree”, ”Neu-
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tral”, ”Agree”, and ”Strongly Agree”. Option 1 is ”Strongly Disagree”, while option 5

is ”Strongly Agree”. The generated evaluation statements can be seen in Figure 5.3 and

Figure 5.4.

When the preparation of the questionnaire was completed, an application was made

to the Trinity College Dublin Research Ethics Committee, which was the test environ-

ment with the questionnaire and the chatbot, and the process of sharing the evaluation

questionnaire was started after the committee’s approval.

5.3.1 Determination of Evaluation Statements

The questionnaire presented in this chapter has determined a total of 24 evaluation ex-

pressions by using the evaluation expressions and approaches presented for usability and

user experience in the literature. The completed study (Følstad and Brandtzaeg (2020))

examined user experience in chatbots and presented an evaluation approach for positive

and negative experiences in chatbots. Another study (Holmes et al. (2019)) conducted a

study on chatbot usability. In the study, the statements added as a table for the Chat-

bot Usability Questionnaire (CUQ) were presented. In the given table of the Chatbot

Usability Questionnaire (CUQ), which consists of 16 expressions in total, odd numbers

consist of positive evaluation expressions, and even numbers consist of negative evaluation

expressions.

Evaluation expressions in the questionnaire presented in this project consist of a to-

tal of 24 evaluation expressions, 12 of which are positive and 12 of which are negative.

Another point to be noted in the questions in the questionnaire presented is that the

12 positive expressions and 12 negative expressions are not always the opposite of each

other. That is, one positive expression may not necessarily have a negative equivalent or

one negative expression may not necessarily have a positive equivalent in the evaluation

expressions presented. This situation was managed by looking at whether the evaluation

statements contain a general judgment or not. For example, the statement, which is ”The

chatbot generated an identifying code for me without requesting my personal informa-

tion”, is located only in the positive part. The negative of this statement is not among

the evaluation questions. This is because this evaluation statement refers to a relatively

more specific and precise area, the user is not expected to be indecisive, and the choice is

expected to be clear.

It is aimed to make the results of the users’ evaluations more reliable by presenting

positive and negative evaluation statements in the survey presented. In cases where a

user is not entirely sure about the evaluation, allowing them to think and evaluate both

positively and negatively and assess the positive and negative distributions obtained as a
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result of the survey together will ensure the consistency and reliability of the results and

evaluations. For example, if a user agrees that the provided chatbot is easy to use, the

user is not expected to agree that the chatbot is complex to use. Therefore, it is expected

that the distributions will be distributed symmetrically in evaluation expressions that are

opposite to each other. On the other hand, unsymmetrical distributions can be given as

an example of areas where users are indecisive.

The objectives of the questionnaire and desired outputs as a result of the questionnaire

to be completed are as follows:

• The presented survey aims to measure the user experience provided by the chat

robot in terms of user satisfaction.

• The second objective is to measure the performance of the developed chatbot by

associating it with the user experience.

• The last objective of the questionnaire is to learn users’ general habits in using

chatbots regardless of the chatbot experience presented in this study.

5.3.2 Participant Recruitment

Participants were requested to partake in the survey by the announcement made among

M.Sc. Computer Science students at Trinity College Dublin. For this reason, users are

experienced in computer-human interaction. In addition, the text of the announcement

kindly asks the people who read the announcement to share it in their own group, so it

is aimed to diversify the participant profile. At the end of the process, 10 participants in

total stated that they wanted to participate in the evaluation survey, and the survey link

was sent to them. After the announcement text was shared, 10 participants tested the

chatbot and completed their evaluations.

5.3.3 Ethical Considerations

A detailed information text has been created so that users can have detailed information

about the survey and the chat robot they will test. The rights of each user during and after

the study (for example, participants are free to answer all questions on the questionnaire,

participants can delete their experiences from the study after the study, for this they

should e-mail the fac to the researcher) were explained to the participants and presented

with a statement form. No personal data was requested from the participants in order to

store them during the survey or chatbot experience, and this was explained to them in

detail. Chat robot does not request or store any personal information of any user since it
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includes the users in the process by generating the virtual identifier code (fast access code)

that it produces. The evaluation survey also confirms to the users with a statement1 added

on the survey that the chatbot continues its activities without requesting any personal

information.

5.3.4 Results

After the results were collected on Microsoft Form, the survey results were displayed on

the result display screen, and the Figure 5.3 and the Figure 5.4 were added to the section

below.

Figure 5.3: Results of the first part of the survey2

1The added expression is ”The chatbot generated an identifying code for me without requesting my
personal information”.

2The 11th evaluation expression that cannot be read on the given figure is ”The chatbot successfully
understood the date information I entered for the appropriate part and the vehicle type/properties
information”.
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After the information sheet and informed consent form, 12 different statements with

positive statements were sent to the participants to evaluate their experiences. Afterward,

12 different expressions were conveyed in the next section. This time the expressions had

a negative attitude. When interpreting the results, the two figures will be interpreted

together and evaluated as a single output, but if the evaluation results in the figures

differ highly for the related statements, the evaluation statement in both sections will be

examined separately.

Figure 5.4: Result of the second part of the survey3

In Figure 5.3, all of the participants (70% Agree, 30% Strongly Agree) stated that

communication with the chatbot is easy. This shows that the intended user-friendly

conversation designs have positive effects on users.

While the chatbot was being designed, informative examples were shared between the

conversations so that the users would be aware of the next step. As intended, all users

3The 11th evaluation expression that cannot be read on the given figure is ”The chatbot did not
understand the date information I entered for the appropriate part and the vehicle type/properties
information”.
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(40% Agree and 60% Strongly Agree) stated that the chatbot guided them well. Likewise,

these redirects are aimed at preventing users from getting lost during the conversation.

Users say, ”I felt lost during the conversation.” The expression was evaluated as 60%

Strongly Disagree, 30% Disagree, 10% Neutral.

About 80% of the users (1 participant skipped evaluating this expression) stated that

the chatbot was able to successfully make sense of all the messages written. Although this

indicates that the chatbot can make sense of user messages at a level that can be called

good, it also shows that there are areas to be developed in this regard. A ready-made

dataset was not used for the training of the chatbot presented in this thesis. The entire

training set was designed by the developer. The approximately 80% ratio obtained also

shows that the training data has areas that can be fed with richer and different content.

90% of the users stated that the chatbot generates their answers quickly. This is one

of the critical factors in making the user experience more effective.

At least 70% of the users stated that talking with the chatbot made them feel comfort-

able. The reason why this rate is relatively low compared to other rates is that although

the context of car rental seems to include conversations on a specific area, it actually has a

structure of having too many customized smelling areas in itself. For example, users may

be hesitant about how they can express this subject precisely because they are expected

to type the vehicle features they want in an empty text box while specifying the vehicle

they want to rent. On the other hand, waiting for the user to write a date in the car rental

start and end date fields without presenting any date selection panel may have created

an area that requires more control for them. These situations are deliberately kept in the

chatbot at this stage. Since one of the aims of this project is to provide an effective model

for the ability of the chatbot to make sense of user inputs in a personalized chat flow,

users were asked to write their own expressions to achieve the aim of the project, even

though it was known that more user-friendly structures could be offered for these parts.

At least 90% of the users found the answers generated by the chatbot to be reassuring,

and likewise, 90% of the users found the prompts of the chatbot meaningful. These

ratings are statements that also measure users’ overall chat experience. The answers of

the chatbot guide the user and are effective in the next reply of the user.

In part 1, 100% (70% Agree,30% Strongly Agree) of the users found the language

used by the chatbot in the appropriate form. In part 2, 30% of the participants found the

chatbot’s language was evaluated as a computer style. While designing the chatbot, the

language used is not intended to be too formal or too intimate.

90% of the users stated that they were not bored during the conversation. The quick

answers offered by the chatbot and the efficient answers and directions by the users are

effective in achieving this rate.
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90% of the users (at least 80% of the users (80% Strongly Agree) in the first part of

the survey) stated that the chatbot successfully understood the entered date information

and fast access code information. In the second part, 90% of the users stated that the

chatbot successfully understood the entered date and vehicle features information. This

ratio shows that the work in the natural language understanding section can be considered

successful. At this point, additional improvements can be made to the training data based

on real user conversations to take the user experience to a higher level.

In the last statement, 80% of the respondents stated that an adaptive/personalized

chat experience on chatbots created a positive experience for them. An in-depth inter-

pretation is provided in the section 5.3.4.1 for this area.

By grouping the results, a more in-depth look at certain aspects can be provided. To

indicate which expressions are grouped together, the expressions will be numbered in the

order of their order in Figure 5.3, representing the first part, and Figure 5.4, representing

the second part. When the second, sixth, seventh and eighth expressions in the first

part and the second, fifth, seventh, eighth, and ninth expressions in the second part

are analyzed as a group, it is seen that the participants are satisfied with the chatbot’s

guidance and responses. In the first part, 100% of the users think that the chatbot provides

good guidance and that the language of the chatbot is in proper form. Conversely, in the

second part, 30% of the users found the language of the chatbot in the computer style,

and only 10% of the users were hesitant about giving the exact answers that the chatbot

should give. The remaining users (90% of all users) stated that the answers and questions

of the chatbot were presented in the relevant areas without any issues and in accordance

with the content.

Similarly, in terms of the ease of use of the chatbot, we can consider the evaluation

statements related to this field as a group. The first and fifth statements from the first

group statements and the fourth and tenth statements from the second group statements

are the parts where evaluation results can be interpreted about the usefulness and comfort

of the chatbot. When we look at the results, it is seen that users think that it is easy

to use the presented chatbot and maintain communication with the presented chatbot.

100% of the users stated that it is easy to maintain communication with the chatbot.

This is one of the necessary parts to ensure user satisfaction.

The fourth and ninth expressions from the first group and the first, fourth, and tenth

expressions from the second group can be used to evaluate the dynamic nature (generating

fast and various response styles, providing a comfortable speaking experience, etc.) of

the chatbot. The results show that users find the presented chatbot in a well-designed

structure that produces fast responses and has different response styles.

As expected, the statement of the presented survey that differentiated the participants
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in the most different points, ”I would like to make transactions with a real person through

a call center instead of a chatbot.” has been an expression. Users rated this expression

as 10% Strongly Disagree, 30% Disagree, 20% Neutral, 10% Agree, and 30% Strongly

Agree. Considering the results, the rate of agreeing with the statement and having an

attitude against the statement (total 40%) seem to be equal, but the rate distributions

differ within themselves. For example, there is a group of 10% who strongly disagree with

the statement, while there is a group of 30% who strongly agree with the statement. This

expression contains a more general judgment than other evaluation expressions and pro-

vides a general evaluation opportunity for users to add their previous chatbot experiences

to the process. The reason for including this expression in the evaluation criteria is to

learn users’ attitudes towards completing their transactions via chat robot. When the

survey results were examined in detail, it was seen that even the participants who found

the chat robot presented in this thesis to be quite successful according to all the evaluation

criteria chose to complete their transactions with a real human despite everything in this

evaluation statement. One of the conclusions drawn from all evaluation experiment re-

sults is that the improvements and personal flows provided by the presented chatbot have

a pretty positive effect on the user experience. However, this positive effect in this area

did not have the same strong impact on changing the general habits of users. The general

habits of the users are fed by the results of their experiences in every area of their lives.

It seems necessary to improve the chatbot experiences offered in all areas (e-commerce,

health sector, customer service, etc.) for users to choose to complete their transactions

through a chatbot instead of meeting with a real person over the call center. This shows

that chatbots are still not fully adopted by users in some areas. Making chatbots directly

preferable for users over talking to a call centre requires a planned process in all areas

that use chatbots. Hopefully, in the future, the chatbot experience will be satisfactory

in all areas that users come into contact with, allowing users to choose to complete their

transactions in contact with the chatbot instead of a real customer service worker.

As explained earlier(in section 5.3.3), the evaluation statement ”The chatbot generated

an identifying code for me without requesting my personal information” is only included

in the positive section(first part of the questionnaire) and shows the ethical approach of

the system. This defined code (fast access code) allows the user to be known by the

system so that personalized content is offered on a per-user basis during the chat.
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5.3.4.1 Discussion About Personalization

The 12th statement4 in the first part of the survey and the 12th statement5 in the 2nd

part of the survey aim to measure the personalized chat experience offered by the chatbot

and the user satisfaction generated by this experience.

Evaluating the results for both expressions together will provide a clearer interpre-

tation of the results. For the first statement, 80% of the participants stated that the

personalized chat experience offered by the chatbot was a positive experience for them.

In the second statement, 80% of the participants did not agree with the idea that the

personalized experience offered is a negative experience. While these results show that

the results are consistent, providing a personalized experience on chatbots increases users’

satisfaction and improves their experience.

5.4 Summary

The completed process for the intent classification evaluation shows that the chatbot has

successfully carried out the intent classification stages. At the end of the questionnaire

process, it can be seen that the task-oriented chatbot that provides a personalized chat

experience satisfies the users. But one finding from the evaluation results is that users still

prefer, in some cases, to complete their transactions by talking to real people instead of

chatbots. For this, users should be able to test the chatbot experience in different areas,

and users should be familiar with the approaches in this area. Therefore, the evaluation

data obtained indicate that there are issues to focus on for future improvements and

solutions.

4The added statement is ”Getting an adaptive/personal experience with the chatbot created a positive
experience for me”.

5The added statement is ”Having an adaptive/personal experience with the chatbot did not create a
positive experience for me”.



Chapter 6

Conclusion

This section will address the outcomes of the studies experienced and performed so far.

It consists of three parts limitations, conclusion, and future work.

6.1 Limitations

Pre-made training datasets were not used in the project, so the project produced the

training data itself. The difficulties of creating training data in the context of car rental

were experienced during this project. The fact that the car rental processes are carried

out in different procedures in each country has caused the training data to consist of

more general information. Likewise, since not every vehicle brand and model is available

in every country, the database of the vehicles to be rented had to be created on more

popular vehicles. This limitation area also created areas to focus on in future studies.

Another limitation is the training durations and data sizes that increase over time

during the repetitive completion of model trainings during the development process. Es-

pecially in the development process, trials of natural language processing processes with

different components, testing different language models on the system have created model

training processes that take a long time and require repetition from time to time. The use

of high-speed and high-capacity clusters provided by the ADAPT Center has been helpful

in tackling this challenge. In this way, simultaneous development and testing activities

were carried out both in the local environment and in the cloud environment.

6.2 Conclusion

In this study, task-based chatbot development in the context of car rental has been com-

pleted, and various approaches have been applied throughout the development process
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in order to provide users with a personalized adaptive conversation experience. Since a

previously prepared training dataset was not used while developing the chatbot, the study

used a training dataset in the context of car rental, which it created itself. This report,

which includes all the approaches applied to the development process of the chatbot, also

includes detailed studies in the literature.

All the difficulties experienced during the development process of the chatbot are

detailed in section 6.1, and the approaches applied in these difficulty areas are explained

in the relevant sections throughout the report.

This completed study applied an evaluation process to evaluate the chatbot developed

in addition to the chatbot development process. The study, which applied an evaluation

for intent classification in the first part, started real user tests after successful outcomes.

After preparing the appropriate test environments for real user tests, the evaluations of

the users who tested the system were collected through the online survey created. Real

user tests found the chatbot, which was developed in this study, mostly successful on the

basis of the evaluation criteria presented. This result shows that the approaches applied

in the project resulted in successful outputs. Survey results show that a personalized

and adaptive conversation experience offered in chatbots contributes positively to users’

overall experience.

6.3 Future Work

This completed work has developed the necessary user dialogs and possible scenarios

while creating a personalized chat experience in the context of car rental. The operation

of the car rental process worldwide and the procedures followed may differ from country

to country. The study proposes a training data corpus creation for this area that includes

much broader scenarios (for example, customized by country) as a possible field of study

for future studies.

Independent of the developed chatbot within the evaluation criteria, in the evaluation

statement1 added to understand the general habits and trends of the users, 40% of the

survey participants preferred chatting with a real person to complete the transactions

over communication with the chatbot. This situation still shows that the general habits

of some people are to do business in communicating with real people. Future research

can investigate people’s prejudices and reasons for chatbots before their development pro-

cess, and get some ideas by completing extensive literature reviews about them, perhaps

planning a survey. Future work can guide chatbot development and design processes by

1The specified evaluation expression is ”I would like to make transactions with a real person through
a call center instead of a chatbot”.
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tackling the factors that cause people to be hesitant and biased toward chatbots. Also,

future work could develop chatbots in a much wider variety of scenarios that could pro-

vide a personalized chat experience while applying approaches that break users’ prejudices

about chatbots. While doing these, it can develop new approaches that will give users a

chat experience as if they are chatting to a real person.
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Appendix A

Use-Case

The chatbot presented in this project provides chat experiences terminated by users.

Therefore, a large number of use-cases can be created for different scenarios. This report

is based on basic flows and auxiliary flows.

Use Case Name Chatbot guidance during the wrong date entry

Use Case Overview
This use case specifies the flow applied to the date field when the user is not typing the date
information in a format that the chatbot can understand.

Actor User
Trigger The user tells the chatbot that he/she wants to rent a car.

Precondition 1 It is sufficient to trigger the use case. After it, the date must be entered incorrectly.

Basic Flow

The user implies that he/she wants to rent a car.

Chatbot asks for date information.

The user enters the date information incorrectly.

Chatbot shows user the appropriate format of date information.

The user enters the date information correctly and continues the rental process.

Alternate Flow

The user implies that he/she wants to rent a car.

Chatbot asks for date information.

The user enters the date information incorrectly.

Chatbot shows user the appropriate format of date information.

The user enters the date information incorrectly.

The user enters the date information incorrectly again and the chatbot shows the correct format to the user with each incorrect entry.

Table A.1: Chatbot guidance during the wrong date entry
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Use Case Name The use-case representing the user’s inability to fully explain the vehicle they want to rent
Use Case Overview It represents the situations where the user cannot fully specify the features of the vehicle they want to rent.

Actor User
Trigger The user tells the chatbot that he wants to rent a car.

Precondition 1 It is sufficient to trigger the use case. After it, the user cannot specify the features of the vehicle they want to rent.

Basic Flow

The user implies that he/she wants to rent a car.

Chatbot asks for date information.

User indicates dates to rent a car.

Chatbot asks the user if he/she has a fast access code.

User states that he/she has the code.

The chatbot requests the user’s fac.

The user writes the fac.

The chatbot asks the user what features a vehicle they want.

The user cannot successfully write the features of the vehicle they want to rent.

The chatbot shows the user the basic vehicle categories and vehicle features.

The user clicks on one of the suggestions.

The chatbot lists the vehicles that the user wants.

The user completes the rental process for the vehicle selected from the list and leaves the chat.
Alternate Flow *This process basically consists of a single flow.

Table A.2: The use-case representing the user’s inability to fully explain the vehicle they
want to rent



Appendix B

Dialogues

This section contains screenshots of examples of the chatbot’s basic conversation flows.

In a real scenario, these flows can be directed and differentiated in many different ways.

Figure B.1: Conversation flow for basic dialogues(without fast access code at the initial
stage)
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Figure B.2: Conversation flow for basic dialogues(with fast access code at the initial stage)

Figure B.3: Basic conversation flow of a user who wants to rent a vehicle different from
the recommended vehicles after fast access code entry
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Figure B.4: A short dialogue about one of the frequently asked questions
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