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Abstract

Speech is one of the most important means of communication for humans. With computer
systems becoming more and more part of our daily lives, it therefore seems reasonable to
develop computer programs that can communicate with human users via speech. These
programs are known as spoken dialogue systems. A central part of human dialogue is the
organisation of speech into alternating turns. Previous research has shown that humans are
highly skilled in anticipating the end of the previous turn to prepare a timely response and keep
the conversation fluid. Replicating this behavior is thus also important for enabling natural,
fluent and responsive interaction with spoken dialogue systems.

This dissertation puts the focus on the analysis of nonverbal qualities in dialogue to help
bridge this gap. In particular, the influence of speaker personality types on nonverbal qualities
is examined. Results of this analysis could help to adapt turn-taking models to the personality
type of their users to simulate more natural conversation. Furthermore, in order to examine the
predictive power of nonverbal qualities on turn-taking, a logistic regression model is presented
that makes continuous turn-taking decisions based on nonverbal qualities. To achieve this, a
multimodal dataset of spoken English task-based dialogues is utilised. Next to annotations of
the turns and other nonverbal qualities such as gaze and laughter, the dataset also contains
personality scores for the participants based on the Big Five model. This dissertation finds
evidence that the openness trait of the Big Five model, influences the total time spoken in a
dialogue, the average time between turns and the amount of times a person gets interrupted
during dialogue. There is also evidence that the extroversion factor influences the amount of
gaps in speech a person leaves during dialogue. The presented continuous turn-taking model
does not outperform a last-known value baseline.
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1 Introduction

Speech is arguably one of the most important and most commonly used form of
communication for humans. Furthermore, it is fast and provides excellent error resilience
since potential misunderstandings can be resolved immediately. With intelligent machines
and computer systems becoming increasingly part of our daily lives, it seems sensible to
develop systems that allow human users to operate them via speech.

Such computer programs are known as spoken dialogue systems and can replace more
established user interfaces such as a mouse and keyboard input. Next to being a potentially
more natural interface than a mouse and keyboard input, spoken dialogue systems also
provide remote control in situations where the user’s hands may be occupied. When spoken
dialogue systems first emerged, one of the main challenges was understanding the user’s
speech input. However, with the rise of deep learning techniques, these problems have been
widely solved, putting the focus on more engaging, interactive and believable interactions
with spoken dialogue systems. Over the last years, especially Intelligent Personal Voice
Assistants such as Amazon’s Alexa or Google Assistant have become popular. However,
research suggests that these systems are mainly used for simple tasks such as asking for the
weather forecast. This indicates that modern spoken dialogue systems fail to fully realise the
potential of speech as a form of communication.

In order to overcome these one-turn interactions with spoken dialogue systems and provide
truly responsive, interactive and natural feeling conversations, it is essential to replicate
human-level turn-taking in spoken dialogue systems. Turn-taking describes the organisation
of dialogue into alternating turns and is characterised by humans trying to minimise gaps
and overlaps between turns. On the one hand, the previous speaker should not be
interrupted. On the other hand, gaps between speech should be short to keep the
conversation fluid. To achieve these dynamics, humans process a wide range of cues that
help them anticipate the ending of the previous speaker’s turn.

Analysing these cues can be a key in replicating human-level turn-taking in spoken dialogue
systems. In this thesis, the focus is put on the analysis of nonverbal qualities in dialogue
that can help a spoken dialogue system to predict turn-taking dynamics. This means that
signals such as the distribution of speaker activity, gaze and laughter are analysed instead of
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the spoken content of the dialogue. These signals have the advantage that they are
applicable irrespective of the spoken language, are faster to process and less prone to errors
during signal processing since no natural language understanding is required. Therefore, the
central question of the thesis is to what extent the processing of nonverbal signals in
dialogue can support spoken dialogue systems in turn-taking decisions.

1.1 Thesis Structure

The remaining parts of the thesis are structured as follows. First, chapter 2 provides an
overview of the related literature required for understanding the dissertation. Based on this
literature review, the research questions are then derived in the summary of chapter 2. After
this, chapter 3 gives an overview of the research methods used in the thesis to answer the
posed research questions. In chapter 4, the experiments conducted to answer the research
questions are described. Next, chapter 5 presents the results of the experiments. Finally,
chapter 6 summarises the dissertation and provides an outlook on possible future work.
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2 Related Work

In this chapter, literature that is relevant to the thesis is discussed. First, literature about
turn-taking in human dialogue is presented. Then, the following sections describe literature
about spoken dialogue systems, the Big Five personality traits, nonverbal analysis of
dialogue and the role of laughter in dialogue. Finally, the research question is deduced from
the literature review.

2.1 Turn Taking in Human Dialogue

Turn-taking in human dialogue describes the organization of dialogue into alternating turns
of the participants and is a complex cognitive task. Participants must process what is being
said while preparing their own responses in a short amount of time. It is desirable for
participants to keep only short gaps between utterances to keep the conversation fluid. On
the other hand, participants in a dialogue have to avoid speaking too early to not interrupt
the previous speaker. Research suggests that gaps between turns in human dialogue typically
last about 0-250 ms [Heldner and Edlund, 2010] [Stivers et al., 2009]. However, the
magnitude of this gap is influenced by factors like the nature of the dialogue and cognitive
load. For instance, [Trimboli and Walker, 1984] found that gaps in competitive dialogues
like a debate are shorter than in friendly dialogues. These dynamics are stable across
languages and cultures, which is remarkable since different languages vary significantly in
terms of syntax [Weilhammer and Rabold, 2003] [Stivers et al., 2009]. Depending on the
language, a verb, which can make up a large part of the meaning of a sentence, can also
come very late in a sentence leaving less time to react.

Moreover, there is extensive research that has quantified latency in speech production. For
example, [Indefrey and Levelt, 2004] found that the delay between seeing a picture and
forming a single word to describe the picture is in the magnitude of 600 ms. Furthermore,
[Griffin and Bock, 2000] quantified the delay to form a short sentence at 1200 ms. This
means that the latency for producing even a single word is higher than the typical gap in
human dialogue. This raises the question of how humans are able to hold conversations with
minimal gaps between turns. In the following, we look at the two main theories that aim to
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explain this phenomenon.

2.1.1 Projection Theory

[Sacks et al., 1974] defined a turn as a linguistic construct that is built of
"turn-constructional units" (e.g., a word or a phrase). When a turn-constructional unit is
finished (called turn-completion point in the paper), a turn change can occur with a gap
between the speakers, an overlap between the speakers, or without a gap and without an
overlap between the speakers. From their data analysis, they find that the most frequent way
of changing turns is with no gap and no overlap. Following this, they proposed the idea that
humans can anticipate the end of a turn, which allows them to prepare a timely response.
The paper, however, does not further explain the mechanism behind this, but they assumed
that syntax, semantics and intonation allow humans to anticipate the ending of a turn.

2.1.2 Signalling Theory

On the other hand, it was proposed that participants in a dialogue send out signals when
they want to end a turn [Duncan, 1972]. The difference with the theory by [Sacks et al.,
1974] is that humans react to cues they receive rather than anticipate them. [Duncan, 1972]
mentions the following cues that indicate the end of a turn:

• Rising or falling intonation at the end of a phrase

• Drawl on the final syllable or on the stressed syllable of a terminal clause

• Termination of hand gesticulation

• Backchannels such as "mmh" or "you know"

• Falling pitch and loudness combined with a socio-centric sequence

• Completion of a grammatical clause

In addition, [Duncan and Niederehe, 1974] found that the more clues there are, the more
likely it is that a turn will be completed.

2.1.3 Discussion

There are several studies that discuss and build upon these two theories. A common
argument against the signalling theory is that the cues mentioned occur too late in a turn,
so participants in a dialogue cannot react to them in time. [Levinson and Torreira, 2015]
estimated that a response would occur approximately after 600-1500 ms if humans were
responding to cues. In contrast, [Heldner and Edlund, 2010] claimed that gaps larger than
250 ms could possibly be explained by the response to turn-taking cues. Overall, it seems
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difficult to reject the theory on the basis of timing alone since short intervals between turns
could also be explained by responses to "false alarms".

Meanwhile, the main criticism of the projection theory is that [Sacks et al., 1974] does not
specify the mechanisms that lead to predicting the end of a turn. This has been further
investigated by the following studies. [De Ruiter et al., 2006] had conducted an experiment
in which subjects listened to a conversation and were asked to press a button when they
thought a turn was about to end. Participants were very accurate in this task, with reaction
times of less than 200 ms, suggesting that they were anticipating the end of a turn rather
than reacting to a signal. In a further experiment, subjects were listening to a filtered
version of the conversations with no intonation and were still able to predict the endings of
the turns with a high degree of accuracy. In a final experiment, participants heard a version
of the conversations with intonation but with a filter so that the spoken words could no
longer be identified. In this version of the experiment, the participants’ accuracy decreased
significantly, and the authors concluded that humans rely primarily on syntactic and
semantic information to anticipate turn endings. These findings were reproduced and backed
by other studies like [Gambi et al., 2015].

In addition to syntactic and semantic information, several studies investigated the impact of
gaze and gestures of participants on projections of turns. For instance, [Kawahara et al.,
2012] analyzed multiparty conversations in which one person held a scientific presentation to
an audience of two. The authors tried to predict the intervention of the audience with a
logistic regression classifier based on prosody and gaze features. They found that a
combination of both feature sets yielded the best results. In particular, they suggested that
the presenter is more likely to gaze at the person in the audience before that person starts
speaking. Similarly, [Mutlu et al., 2012] found following dynamics in three-party dialogue.
First, their analysis shows that the current speaker is likely to look at the person to whom
they yield the turn, which is consistent with the results from [Kawahara et al., 2012].
Furthermore, they noted that the person taking the floor is likely to look at the current
speaker near the end of their turn. Lastly, they noted that the current speaker gazes away
from the other participants in the conversation to signal that they have no intention of
finishing their turn.

Finally, [Riest et al., 2015] [Heldner and Edlund, 2010] conclude that turn-taking in human
dialogue is primarily based on projection while signalling serves as a backup.

2.2 Dialogue Systems

Dialogue systems are computer programs that can simulate a conversation with humans
either through text or speech. They can be used to provide user support, drive up user
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engagement, collect user information or help users to execute a certain action. Furthermore,
dialogue systems find use in many domains, including healthcare, education, commerce and
daily life. Typically they contain a natural language understanding module, a dialogue state
tracker and a natural language generation module. Especially the use of deep learning
techniques has advanced these technologies significantly in the past years [Motger et al.,
2022]. Two research areas relevant to the dissertation are examined in more detail in the
following. First, we discuss state of the art in spoken dialogue systems and then look at the
prediction of turn endings in spoken dialogue systems.

2.2.1 State of the Art in Spoken Dialogue Systems

Spoken dialogue systems can communicate with users via speech. The main difference to
text-based systems is that they include a speech recognition and text-to-speech modules.
Spoken dialogue as a means of communication offers many advantages. It is fast, flexible
and offers resilience to error handling and constant validation. In addition, the use of spoken
dialogue systems provides a hands-free and eyes-free interface that can be useful for people
with disabilities or generally in environments where the user’s hands and eyes are engaged,
such as in a car [Edlund et al., 2008]. However, contemporary dialogue systems fail to fully
utilise these advantages. For example, if the user does not follow a predefined behaviour, the
dialogue system may respond with unsatisfactory replies. In fact, research shows that spoken
dialogue systems are primarily used for simple tasks, such as asking for the weather or
directions [Dubiel et al., 2018].

Therefore, it seems reasonable to aim for a more natural interaction with humans when
developing spoken dialogue systems to realise these systems’ full potential. However, this
raises the question of what more natural exactly means in this context.

[Edlund et al., 2008] suggested that users perceive dialogue systems metaphorically rather
than as conversational partners. For instance, there is the "interface" metaphor and the
"android" metaphor. The user’s expectations vary depending on the perceived metaphor,
and design decisions of the system have to be made accordingly. For example, a system that
is presented as an anthropomorphic agent would be expected to have higher communication
capabilities than a system that is presented as an interface for a simple task, such as asking
about the weather. By clearly communicating the chosen metaphor to the user with design
choices, interaction with the dialogue system can be made more natural.

[Dautenhahn et al., 2005] conducted a survey in which participants were asked about their
attitudes toward interaction with a hypothetical robot companion and found that people
prefer human-like communication in an ideal situation. Achieving human-like communication
is an enormous task and requires breakthroughs in multiple research areas, such as
knowledge and memory modelling, cognitive AI, and symbolic reasoning [Shum et al., 2018].
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In order to focus on a more immediate goal, [Motger et al., 2022] used the term of
user-perceived quality and argues that this correlates with human-like communication.
Figure 2.1 shows an extensive overview of features that impact the user-perceived quality of
spoken dialogue systems. In the following, we take a closer look at three open areas of
research to improve the user-perceived-quality of exchanges with spoken dialogue systems
[Lison and Meena, 2014] [Ward and DeVault, 2017] [de Barcelos Silva et al., 2020].
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Figure 2.1: Overview of features that impact the perceived quality of dialogue systems. The
heat map shows how many research papers deal with the respective area (green means more
and red stands for less). The influence of the feature on the quality is indicated in brackets
after the respective feature. A "+" indicates a positive impact, a "-" indicates a negative
impact, "=" stands for neutral impact, "+/-" means that it depends on the domain of the
dialogue system and "?" means that there is not enough literature for a clear judgement.
Source: [Motger et al., 2022]

Incrementality

As discussed in section 2.1, humans prepare their response in dialogue while processing what
is being said. This leads to minimal response times in human dialogue. The same behaviour
is desirable for an exchange with a dialogue system. This means that dialogue systems
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should not wait until a turn was finished to start generating a response but rather start
processing and refining the response incrementally with incomplete information. For
example, [Tsai et al., 2019] compared an incremental and a non-incremental version of a
movie recommendation dialogue system. They found that people who tested both systems
not only perceived the incremental system to be "smoother" (which is a fact, since the
delays between turns are shorter) but also rated the quality of the incremental system’s
recommendations higher, even though the recommendations were the same for both
systems. This shows that the incremental system not only made the communication more
human-like but also increased the user-perceived quality.

Multimodality

It was shown in section 2.1 that nonverbal information such as gestures or gaze has an
impact on dialogues, for example, when humans anticipate the end of a turn. On the one
hand, spoken dialogue systems can thus utilise multi-modal information to improve their
turn-taking predictions. On the other hand, spoken dialogue systems can control the flow of
the dialogue by imitating gaze or gestures. Also, the integration of visual input data allows
the dialogue system to react better to the situation it operates in (for example, when
referencing an object in the room). An example of the successful implementation of
multi-modal information was presented by [Skantze et al., 2015]. In their work, a spoken
dialogue system is described that is integrated into a robot head with a human appearance.
The system was exhibited at the Swedish National Museum of Science and was able to play
a simple collaborative card ordering game with visitors. In addition to the standard systems
of a spoken dialogue system, the proposed system tracked the head and hand movement of
the players with a Kinect camera.

Furthermore, the robot head was able to imitate human behaviour by turning its head,
making eye movements, smiling and raising eyebrows. This enabled the system to both
process visual turn-taking cues of the players and emit turn-taking cues to the players. The
authors found that the players were much more likely to yield the turn to the spoken dialogue
system when the system produced combinations of turn-taking cues, such as directing the
gaze to the current speaker, smiling and raising eyebrows. Conversely, their analysis showed
that players were much more likely to take the turn when the system signalled that it had
finished its turn. Figure 2.2 shows the experimental setup of the system.
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Figure 2.2: Experimental setup of the system described in [Skantze et al., 2015].

This example illustrates the positive potential impact of integrating multi-modal data
streams on managing a fluent, natural dialogue. However, [Skantze et al., 2015] note that
the behaviour of their proposed system is primarily based on hand-crafted policies, which
makes it difficult to generalise the system for other settings.

Adaptivity

Communication styles are highly individual and are related to factors such as age and
psychological background [Shum et al., 2018]. Therefore, instead of giving the same
response to every person, dialogue systems should be highly customisable and adaptable to
the situation they are operating in and to the person they are addressing. This could include
adaptions to the preferred communication style of a person or the personality of a person.
For example, [Wang et al., 2019] collected and analysed a dataset of human-to-human
dialogues in which one person tried to convince another person to donate to charity.
Furthermore, they collected the demographic background as well as the psychological
background (e.g., Big Five personality traits, Schwartz Portrait scores) of the dialogue
participants. The annotated dialogues were then examined for correlations between
successful persuasion strategies and the participants’ demographic and psychological data
respectively. For instance, their research suggests that extroverted participants are more
easily persuaded using emotional persuasion strategies. Using this information, a spoken
dialogue system could be developed that adapts its persuasion strategy based on the
demographic data and personality type of its interlocutor.

An attempt at creating an adaptive dialogue system is presented by [Zheng et al., 2019].
The authors analysed a dataset of 20.4 million written dialogues from 8.47 million Chinese
speakers on social media. For each user in the dataset, age, gender and location tags were
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available. The dialogues were then grouped into an unbiased dataset and age, gender and
location biased datasets. These four datasets were used to train seq2seq language
generation models, which provided single-turn responses to questions that were part of the
original dataset. All four models were then manually evaluated regarding appropriateness
and fluency. The authors concluded that the biased datasets (which provided
age/gender/location-specific responses) were rated significantly better than the unbiased
dataset. This indicates that customised dialogue systems increase the user-perceived
quality.

However, there seems to be little research on dialogue systems that goes beyond
customisation based on demographic data such as gender or age.

2.2.2 Turn Taking Prediction in Spoken Dialogue Systems

In section 2.1 we have discussed the nature of human turn-taking in dialogue. Replicating
these dynamics is desirable for a spoken dialogue system to give the user the feeling of
natural communication. Following, we will discuss two main approaches.

Silence-Based Turn Taking Predictions

Systems that use this approach divide speech into evenly spaced segments (e.g., 250-500
ms). At the end of each segment, the system checks whether a certain duration of silence
has been detected. If the duration exceeds a threshold, the system decides if the current
speaker has finished their turn or if they just paused and did not yield their turn. This is
achieved by analysing turn-taking cues, such as those listed in section 2.1.2. Several
machine learning architectures have been proposed using different sets of turn-taking cues as
features. [Ferrer et al., 2002] used a decision tree algorithm with intonation and pitch of the
speaker as features. [Kawahara et al., 2012] proposed a logistic regression classifier with
gaze features combined with intonation and pitch of the speaker. More recently, [Razavi
et al., 2019] presented a naive Bayes classifier with a combination of lexical and acoustic
features.

These approaches are based on the signalling theory from section 2.1.2 and assume that
turn-taking in human dialogue is purely reactive. As we discussed in section 2.1, this is not
accurate. Furthermore, the architectures proposed are non-incremental, which leads to long
delays between the turns as described in section 2.2.1. Also, the performance of these
models depends on the choice of segment length. When speech is divided into bigger
segments, it is more likely that more turn-taking cues can be detected, but this also
increases the delay between the end of a turn and the response. On the other hand, if the
segments are too short, relevant turn-taking cues may be missed, reducing the accuracy of
the model. Lastly, [Heldner and Edlund, 2010] noted that turn changes could often occur
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with slight overlaps in speech, for example, when a speaker produces a backchannel, such as
"mhh" or "yeah". Therefore, models that assume a certain duration of silence between
turns are struggling to detect these turn changes.

Continuous Turn Taking Predictions

In order to address the shortcomings of silence-based approaches, it was suggested that
turn-taking predictions should be made continuously rather than only after an extended
period of silence. For this, the speech is divided into much smaller segments (e.g., 50 ms),
and after each segment, the system makes a prediction about who is going to speak in the
upcoming segments. Figure 2.3 shows the difference between the continuous and the
silence-based approach. [Skantze, 2017] used an LSTM model that was trained on
human-to-human dialogue to predict speech activity up to 3 s in the future for each dialogue
participant. An LSTM (Long short-term memory) is a deep neural network architecture.
Their model makes a binary classification (speech or silence) in 50 ms time steps and can
thus be used indirectly to predict the end of a turn. Voice activity, pitch and volume of
speech were used as input data. Since an LSTM is a deep learning architecture, no manual
feature engineering was required. The functionality of this approach is visualised in figure
2.4. Their model achieved better-than-human performance on the original dataset. The
authors also applied the model to a corpus of human-machine dialogues, with a significant
decrease in accuracy compared to the original dataset of human-human dialogues. This is
probably due to the different characteristics of human-machine dialogue compared to
human-human dialogue.

Figure 2.3: A comparison of the silence-based (non-incremental) approach (on the left) with
the continuous (incremental) approach (on the right). Source: [Skantze, 2017]
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Figure 2.4: A visualisation of the functionality of the continuous approach proposed by
[Skantze, 2017]. Source: [Skantze, 2017]

This approach was later implemented in several other publications. For example, [Ward
et al., 2018] presented an improved LSTM architecture that outperformed the original model
by [Skantze, 2017]. [Maier et al., 2017] also used an LSTM architecture but made use of
linguistic features in addition to voice activity, pitch and volume of the speech as originally
proposed by [Skantze, 2017]. Also, [Maier et al., 2017] trained their model on a dataset of
human-machine dialogue, making it more suitable for use in a spoken dialogue system.

2.3 Big Five Personality Traits

In section 2.2.1 it was shown that a current research challenge lies in adapting dialogue
systems to human personality. Therefore, an approach to classify human personality is
presented.

Describing human personality is a difficult task since there is a wide variety of nuances that
make each person different. [Allport and Odbert, 1936] theorised that people possess a
number of traits (such as "optimistic" or "loyal") that can explain how people think and
react in different situations. Over time, the Big Five model emerged to combine these traits
into a multifactorial model. The model has been proven to be robust across cultures and is
well researched. It consists of the five factors extroversion, agreeableness, neuroticism,
openness and conscientiousness [Digman, 1990]. First of all, extroversion defines the extent
to which people enjoy company, excitement and social interaction. A highly extroverted
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person also tends to be more emotionally expressive and assertive. Secondly, the
agreeableness factor explains a person’s tendency toward social harmony, cooperation, and
altruism. Neuroticism refers to the emotional instability of a person. Someone with a high
level of neuroticism is more likely to experience sudden mood swings, anxiety and is less
resistant to stress. Openness describes a person’s willingness to have new experiences. A
wide range of interests, a high level of creativity and imagination are also associated with a
high degree of openness. Lastly, the conscientiousness factor defines to which extent people
are disciplined, organised and how well they can control their impulses. Table 2.1 gives an
overview of the factors with commonly associated adjectives for high and low levels of the
factors, respectively.

Table 2.1: Big-Five personality factors and commonly associated adjectives. Source [Mairesse
and Walker, 2008]

Factor High Low
Extroversion sociable, talkative, optimistic, assertive quiet, passive, reserved, shy
Agreeableness altruistic, trustworthy, understanding, sympathetic unfriendly, selfish, suspicious, uncooperative, malicious
Neuroticism anxious, neurotic, rude, depressed calm, self-confident, reliable
Openness creative, intellectual, imaginative, curious practical, conservative, ignorant
Conscientiousness organised, disciplined, hardworking, competent lazy, unreliable, forgetful, impulsive

As discussed in section 2.2.1, a major challenge in modern dialogue systems is to adapt the
systems to different personality types. For this reason, many studies have attempted to
identify dialogue characteristics that correlate with the factors in the Big Five model. For
example, [Ahmad et al., 2022] has conducted an extensive literature review summarising
verbal, paraverbal, and body language cues that were found to correlate with high and low
levels of the respective Big Five factors. Figure 2.5 shows a complete overview of the cues
that were identified as part of the literature review by [Ahmad et al., 2022].

A total of 148 cues were identified in the paper. With 90 cues, most were identified for the
extroversion factor, while only six cues were identified for the openness factor. Furthermore,
seven cues were identified for the conscientiousness factor. This shows that a heavy
imbalance exists in cues that were identified for the respective Big Five personality factors.
Moreover, it is evident that most cues are based on body language and verbal cues, while
paraverbal cues have been little explored. Finally, some cues were found to be contradictory
as they were reported for both low and high values of the respective factor. In summary,
these factors show that this area of research is still under-researched.
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Figure 2.5: Overview of verbal, paraverbal and body language cues that were found to correlate
with high and low levels of the respective Big Five factors. Source: [Ahmad et al., 2022]
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2.4 Nonverbal Analysis of Dialogue

It was shown in section 2.3 that little is known about nonverbal signals that are related to
Big Five personality traits. This section, therefore, presents research that deals with the
nonverbal analysis of dialogue.

Irrespective of the spoken language, humans are able to infer the "mode" of dialogue (such
as an argument or collaborative dialogue) based on information such as the volume and
pitch of the voices, gestures, body language and elapsed time between the turns of the
speakers. For example, loud talking and short time between turns could indicate an
argument, while calm voices and relaxed body language could hint toward a collaborative
dialogue. However, understanding the context of an overheard conversation is a challenging
task for spoken dialogue systems. The nonverbal analysis of dialogue can help bridge this
gap and is thus important for the design of spoken dialogue systems. Figure 2.6 shows a
rough division between nonverbal and verbal behaviours in dialogue. In particular, the
overlap of vocal behaviour with nonverbal behaviour (chronemics and vocalics) is of interest
for spoken dialogue systems. It can be processed with a speech recognition module (which is
usually part of a spoken dialogue system anyway) and does not require additional sensory
input such as a camera. Chronemics includes the analysis of the timing of speech activity in
dialogue, while the study of vocalics includes nonverbal manipulation of voice such as pitch
or volume.

Figure 2.6: A rough classification of verbal and nonverbal behaviours in dialogue. Source:
[Laskowski, 2011]

As a means of content-free representation of dialogues, [Jaffe et al., 1967] first came up with
the idea of modelling dialogues as Markov models. Dialogue is represented as a set of states
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with transition probabilities between the states. For example, a two-party dialogue can be
represented with the states "person A speaking", "person B speaking", "joint speech", and
"joint silence". Figure 2.7 shows an example of such a Markov model. [Laskowski, 2011]
further developed this idea and presented a general model for multiparty dialogue.

Figure 2.7: A Markov model for two-party dialogue. Source: [Laskowski, 2011]

2.5 Laughter in Dialogue

Laughter is prevalent in human-to-human dialogue and is oftentimes associated with
humorous situations. However, laughter is also an important nonverbal signal that fulfills a
variety of social functions such as expressing disbelief, sarcasm or to express sympathy
[Mazzocconi et al., 2020].

Depending on these different social functions, literature has attempted to divide laughter
into different categories. [Koutsombogera and Vogel, 2022] used a binary classification of
mirthful and discourse laughter to analyse occurrence patterns of laughter in different
thematic structures of dialogue. An instance of laughter is classified as mirthful when it
happens due to amusement. All other instances of laughter that not happen due to
amusement but rather to fulfill a social function are classified as discourse laughter.
Meanwhile other works like [Reuderink et al., 2008] have classified laughter based on
acoustic features in hearty, amused, satirical and social laughter. In [Szameitat et al., 2009],
laughter is classified based on the expressed emotion into joy, tickling, taunting and
"schadenfreude" laughter. In summary, no clear classification of laughter has emerged in the
literature, and it therefore seems reasonable to choose a classification that best suits the
research purpose at hand.
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However, it does not seem like laughter has been considered as a feature for turn-taking
models in existing literature.

2.6 Summary

The literature review showed that while spoken dialogue systems have made significant
progress through the use of deep learning techniques, they are still mainly used for simple
tasks such as asking for the weather forecast. This indicates that spoken dialogue systems
are perceived only as an interface and not as actual interlocutors. To hold natural feeling
dialogues with human users that go beyond just one-turn interactions, it is therefore
essential to develop spoken dialogue systems that are capable of replicating human-level
turn-taking.

In order to overcome this challenge, the three research areas of incrementality, multimodality
and adaptivity have been identified. In particular, developing systems that adapt to the
user’s personality type remains challenging. While previous research has identified dialogue
qualities that correlate with the various factors of the Big Five personality model, there is a
strong imbalance in the number of cues identified for the different Big Five factors.
Furthermore, most of these cues are based on body language or are verbal. There is only
limited research that has identified paraverbal and nonverbal cues that are correlated with
the Big Five factors.

Based on this, we pose the following research questions:

Q1 What are nonverbal qualities in dialogue related to Big Five personality factors?

Q2 How well does a continuous turn-taking model perform that makes its predictions
based on nonverbal qualities?

In order to answer these questions, the following approach is proposed:

1. A multimodal dataset of spoken English dialogues is analysed. The dataset contains
information about the Big Five personality factors of the speakers, as well as dialogue
annotations. These annotations are utilised to calculate nonverbal dialogue qualities
for each speaker. The qualities are then compared between the speakers in order to
find out whether certain personality traits influence dialogue qualities.

2. A logistic regression model is built on basis of the dataset mentioned above. The
model continuously predicts speech activity for the dialogues in the dataset based on
nonverbal features. The performance and the feature importance scores are then
analysed.
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3 Methods

This section provides a description of the research methods used in the thesis to answer the
research questions that were introduced in section 2.6. First, the used dataset is described.
After that, the preprocessing of the dataset is described, followed by an explanation of the
used machine learning methods and the used evaluation methods.

3.1 Dataset

For this research, we use the MULTISIMO dataset. The dataset is a multimodal corpus
which contains audio and video recordings of human spoken English dialogues. The
dialogues are set in a game environment, and each dialogue consists of three participants
with one facilitator and two players. The corpus in total contains 23 dialogues. Of these, 18
sessions have been published with an average length of 10 minutes and a total duration of
about three hours. The recording of the dialogues took place in the School of Computer
Science and Statistics at Trinity College Dublin in 2018. The corpus is publicly available for
download 1. The participants come from a variety of cultural backgrounds, with 16 native
English speakers and 33 non-native English speakers. Furthermore, the gender of the
participants is balanced. [Koutsombogera and Vogel, 2018]

3.1.1 Structure of the Dialogues

Before recording the dialogues, 100 people were recruited to answer a set of three questions.
The task of the two players in each dialogue is to find the three most frequent answers to
each question and then rank them according to the frequency of their occurrence. The three
questions asked to all players are:

"Name three instruments that can be found in a symphony orchestra."

"Name three public places where people are likely to catch the flu."

"Name three things that people cut."
1http://multisimo.eu/datasets.html
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In each dialogue, the facilitator starts with an introduction in which the game is explained.
Then the facilitator asks the players the three questions mentioned above. For each
question, the players have then to find the three right answers and order them according to
their popularity. The facilitator can intervene to help the players answer the questions or
ensure both players have the same amount of speaking time. After the three questions are
correctly answered, the facilitator closes the conversation. The design of the game is
intended to elicit cooperative behaviour among players toward a common goal.

3.1.2 Annotations

In addition to the audio and video recordings of the dialogues, the dataset contains the
transcriptions of the dialogues. The speech annotations contain the segmentation of turns,
timings and spoken content for both the facilitator and the players. Gaps are also annotated
when no speaker is active and overlaps when more than one speaker is active. Moreover,
instances of laughter are annotated along with the timing of the laughter and whether it was
mirthful or discursive. Furthermore, there are gaze annotations of the participants available
for two dialogues. These annotations contain timings and the gaze focus (gaze at facilitator,
player one, player two, or gaze away) for all participants. The annotations were carried out
manually using the Transcriber software. The annotated files can be opened using the ELAN
software. The ELAN software is a tool for creating annotations for audio and video
recordings and was developed by the Max Planck Institute for Psycholinguistics. The tool
can be downloaded free of charge 2. Figure 3.1 shows an example screenshot of the dialogue
annotations opened in the ELAN software.

Figure 3.1: Dialogue annotations in the ELAN software

3.1.3 Big Five Personality Assessment

All participants completed the Big Five Inventory before the recording of the dialogues. The
Big Five Inventory is a test consisting of 44 statements related to a person’s personality. For

2https://archive.mpi.nl/tla/elan/download
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each statement, the participants were asked to indicate whether they agreed or disagreed
with it on a scale from one to five. Based on this questionnaire, scores for each Big Five
personality factor (extroversion, agreeableness, neuroticism, openness and conscientiousness)
were assessed for each participant. Also, the percentile rank of each participant across the
five personality factors was calculated. Finally, the percentiles are normed on the overall
population of the participants. The MULTISIMO dataset contains an anonymised table with
all participants’ absolute scores and percentile rank of each personality factor.

3.2 Data Preprocessing

This section describes general preprocessing steps that were taken. Additional preprocessing
steps that were only executed for the respective experiments are described in detail in
chapter 4.

The dialogues are published as eaf files that can be opened with the ELAN software. From
the ELAN software, the annotations of the dialogues are exported to CSV format so they
can be processed automatically. The resulting CSV files did not contain column names.
Therefore the following columns are defined for each CSV file/dialogue:

• TYPE (Type of the annotation. The different types of annotations are explained
below)

• TYPE2 (Dialogue participant that the annotation refers to)

• START (Timestamp of the start of the annotated action in HH:MM:SS format)

• START2 (Timestamp of the start of the annotated action in seconds)

• END (Timestamp of the ending of the annotated action in HH:MM:SS format)

• END2 (Timestamp of the ending of the annotated action in seconds)

• DURATION (Duration of the annotated action in HH:MM:SS format)

• DURATION2 (Duration of the annotated action in seconds)

• ACTION (Content of the annotation)

The TYPE column contains different types of annotations. In the following, all types that
are relevant to the thesis are listed:

• ID of the facilitator - contains spoken content of the facilitator in string format

• ID of player 1 - contains spoken content of player 1 in string format

• ID of player 2 - contains spoken content of player 2 in string format
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• Sections - contains time stamps of starting and end times of the five sections of each
dialogue (introduction, question 1, question 2, question 3, closing)

• Turns - contains speech activity of all players (without spoken content) for the whole
dialogue in chronological order

• Laughter sections for the facilitator - timestamps for laughter sections of the facilitator
and whether it was discourse or mirthful laughter

• Laughter sections for player 1 - timestamps for laughter sections of player 1 and
whether it was discourse or mirthful laughter

• Laughter sections for player 2 - timestamps for laughter sections of player 2 and
whether it was discourse or mirthful laughter

• Non-laughter sections - timestamps for all sections which do not contain laughter

An example of a preprocessed CSV file is shown in figure 3.2

Figure 3.2: Screenshot of a preprocessed CSV file

Session 3 has a different scheme of annotations, making it difficult to process it along with
the rest of the sessions automatically. Therefore, session 3 is removed from the dataset and
will not be considered in further analysis.

Some dialogue annotations contained typos that hindered the respective session’s automatic
processing. These typos were corrected (e.g., session 8 had the value "queation 3" for the
"Sections" row).

3.3 Machine Learning Methods

Machine learning is a field of research that combines statistical methods and computer
science. Machine learning algorithms can infer behaviour from data patterns without the
need to define a procedure for all possibilities, as in traditional programming. These
algorithms have been developed for many years, but they became particularly popular over
the last decade when increased computing power made it possible to process large data
sets.

Machine learning algorithms can be divided into supervised, unsupervised, and reinforcement
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learning algorithms. In supervised learning, the machine learning model is "trained" on
labelled data with the goal of finding a pattern that can predict a given target variable.
After the "training" is completed, the model can make predictions on unseen data.
Supervised learning algorithms can predict categorical data (classification) and continuous
data (regression). An example of supervised learning would be the classification of objects in
an image. Unsupervised learning algorithms do not require labelled training data. These
types of algorithms do not make predictions for a given target variable but rather try to find
hidden patterns in a dataset. An example use case for unsupervised learning would be
identifying groups of customers from a dataset that follow a similar behaviour.
Reinforcement learning algorithms are the closest to the way humans learn. The algorithm
interacts with an environment and is graded based on a cost- and reward function. Over
time the agent "learns" the optimal policy to interact with the environment, which yields
the desired behaviour. An example of reinforcement learning would be an agent that learns
to play a game over time by playing the game millions of times until it finally finds an
optimal policy to win the game.

Following, the machine learning methods that are used in the thesis are described in detail.
First, logistic regression is described and justification is given as to why it is used. Then, the
conceptual approach to feature engineering is described.

3.3.1 Logistic Regression

Logistic regression is a supervised learning method that is used for classification problems.
For supervised learning, a dataset of a dependent variable and multiple independent variables
is divided into training and test set. The supervised learning algorithm is first "trained" on
the training set to find a pattern in the data that can predict the dependent variable. The
model is then validated on the test set. The details of the "training" of a logistic regression
model are described in the following.

A target function maps a vector of input values (called features) to a predicted output.
Sometimes the target function is also called "hypotheses" in literature. However, in this
thesis, the term "target function" will be used to not confuse it with the terms introduced in
section 3.4.1. The target function hθ(x) for logistic regression is defined as:

hθ(x) =
1

1 + e−θT x
(1)

where x is the set of features for a sample and θ is the set of weights for the features.

We can see that the target function maps a set of input features to a value between 0 and
1. The output of the target function can thus be interpreted as the probability that a sample
is part of class A or class B. The sample is then classified as class A or B based on a defined
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probability threshold. For example, suppose the threshold is 0.5. In that case, every sample
below that gets classified as A, and everything above that gets classified as B. Figure 3.3
illustrates this with an example.

Figure 3.3: Sigmoid function for logistic regression. Samples with a high output value of the
target function are classified into category 1 (red), while samples with a low output value for
the target function are classified into category 2 (green)
Source: https://amalaj7.medium.com/logistic-regression-eb29032511079

In order to find the set of weights θ that divide classes A and B optimally, the gradient
descent algorithm is used. The gradient descent algorithm utilises a cost function that
measures the difference between the predicted output and actual values. According to the
output of the cost function, the weights θ are adjusted. The gradient descent algorithm then
repeats this procedure until the model converges which means that the output of the cost
function does not become any smaller. The final set of weights θ indicates how much each
feature impacted the prediction. When a feature has a weight close to zero, it means they
hardly impact the final prediction. Conversely, a feature with a high (absolute) final weight
has a high impact on the final prediction of the model. For logistic regression, the cost
function is defined as:

cost(hθ(x), y) =

log(hθ(x)), if y = 1

− log(1− hθ(x)), if y = 0
(2)

where hθ is the target function, y is the predicted output, and x is the vector of input
features.

When using large feature sets, it can happen that the model overfits. This means that the
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model exactly fits the training data but does not generalise to unseen data, which negatively
impacts the quality of the predictions. In order to avoid overfitting when using large feature
sets, a so-called regularisation term can be added to the cost function.

The standard logistic regression algorithm only works for binary classes but can be modified
to work with multiple classes. If we consider a classification problem with three classes, A, B
and C, logistic regression is first executed for class, and the two remaining classes, B and C,
are grouped together. Then, logistic regression is executed again for class B and classes A
and C are grouped together. This procedure is done until all classes have been covered and
all samples have been classified.

The literature review has shown that state-of-the-art systems use LSTM networks (see
section 2.2) to make turn-taking predictions continuously. However, LSTM networks require
the tuning of many hyperparameters (such as choice of activation functions, selection of
layers, number of neurons in the layers, etc.) and operate as a "black box", making it
difficult to understand how the predictions were obtained.

This work focuses on understanding the impact of specific turn-taking cues rather than
optimising performance. Logistic regression is therefore used in this work for two main
reasons. Firstly, logistic regression is comparatively easy to use since only one
hyper-parameter (regularisation) has to be tuned. Secondly, logistic regression is more
straightforward to interpret than more complicated neural network models because the
coefficients indicate which features impact the model’s predictions. Understanding the
effects of each feature can yield interesting information.

For this work, the LogisticRegression model from the sklearn library is used.

3.3.2 Feature Engineering

An important part of building supervised machine learning models is the selection of the
right features on which the predictions are based. This section, therefore, describes the
conceptual approach to feature engineering. We start by building an initial set of features for
the model. Next, the recursive feature elimination (RFE) algorithm from the sklearn library
is used to select the optimal set of features. The algorithm iteratively trains the machine
learning model. It then utilises the importance score of the features (such as the feature
weights in the logistic regression model) to prune the feature set. After each iteration, the n
features with the lowest importance score are pruned until a final set of m features is
reached, where n and m are integers that are passed to the RFE function.
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3.4 Evaluation Methods

This section presents the methods required for the evaluation part of the thesis. First
statistical hypotheses testing is described, followed by a description of the Wilcoxon Rank
Sum Test. Then, performance measurements for classifier algorithms are presented.
Precision, Recall and F1 score are applicable for unbalanced datasets, whereas accuracy and
error rates are better suited for balanced datasets.

3.4.1 Hypotheses Testing

When performing a statistical test, a null hypothesis and alternative hypotheses are
established. For example, the null hypothesis might be that a data set has an underlying
normal distribution. The alternative hypothesis would be that the dataset does not follow a
normal distribution. Together with a statistical test, a p-value is calculated, which indicates
how likely it is that an observation occurred under the assumption that the null hypothesis is
correct. The lower the p-value, the more likely it is that the null hypothesis is false. When
the p-value is low enough, the null hypotheses can be rejected, and the alternative
hypotheses can be accepted instead.

That means a result can be considered statistically significant if the p-value is low enough,
so it is improbable that the null hypothesis was falsely rejected. A common threshold for
statistical significance is p ≤ 0.05 while a result with p ≤ 0.01 is considered highly
significant.

3.4.2 Wilcoxon Rank Sum Test

The Wilcoxon Rank Sum Test (also called Mann-Whitney U Test) is a non-parametric test
that determines whether the distributions of two groups have the same underlying shape
(this can also be interpreted as a check for a significant difference between the median of
the two groups).

To apply the Wilcoxon Rank Sum Test following assumptions have to be fulfilled:

1. The dependent variable has to be continuous or ordinal

2. The independent variable has to be categorical with two groups (dichotomous)

3. The two groups of the independent variable must not be related (independence of
observations). An example of a related variable would be when a participant in a study
belongs to both examined groups.

Since the test is non-parametric, no underlying distribution of the examined data is assumed.
For this reason, the Wilcoxon Rank Sum Test is often used as an alternative to the t-Test,
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which requires a normal distribution of the dependent variable but also has more statistical
power.

The null hypotheses and the alternative hypothesis can be formulated as:

H0 The two groups have the same underlying distribution. This means we expect to see
the same values in the dependent variable for both groups.

H1 The two groups do not have the same underlying distribution. This means we expect
to see different values in the dependent variable for both groups.

In the Wilcoxon Rank Sum Test, the ranks of both groups are summed up to R1 and R2.
The statistic U of the test is then calculated by:

U1 = n1 ∗ n2 +
n1 ∗ (n1 + 1)

2
− R1 (3)

U2 = n1 ∗ n2 +
n2 ∗ (n2 + 1)

2
− R2 (4)

U = min(U1,U2) (5)

where n1 and n2 are the respective sizes of the groups being compared.

For this work, we use the mannwhitneyu function from the scipy stats package to calculate
the Wilcoxon Rank Sum Test.

3.4.3 Precision

Precision is a measurement used to evaluate a classifier’s performance. It is defined as the
ratio of true positive (TP) classifications to all classifications made (true positive + false
positive classifications). This means Precision measures the percentage of correctly classified
values out of all relevant values. Maximising Precision is therefore essential when one is
concerned about minimising the number of false positives.

Precision =
TP

TP + FP
(6)

where TP is the number of values that were correctly classified as positive and FP is the
number of values that were incorrectly classified as positive.

3.4.4 Recall

Recall is another measurement used to evaluate a classifier’s performance. It is defined as
the ratio of true positive classifications to all actual positive values in the dataset. This
means Recall measures the percentage of relevant results that were correctly classified.
Maximising Recall is therefore essential when one is concerned about minimising the number
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of false negatives.

Recall =
TP

TP + FN
(7)

where TP is the number of values that were correctly classified as positive and FN is the
number of values that were incorrectly classified as negative.

3.4.5 F1 Score

It is not possible to maximise both Recall and Precision at the same time. This leads to a
trade-off where, depending on the application, it must be decided whether minimising false
negatives or minimising false positives is more important. When neither Recall nor Precision
is clearly more important, one can measure the performance of a binary classifier with the
F1-score, which is defined as the harmonic mean of Recall and Precision.

F1 = 2 ∗ Precision ∗ Recall
Precision + Recall

(8)

3.4.6 Accuracy and Error Rate

When the examined dataset is balanced, one can use the accuracy and error rate
measurement. Accuracy describes the percentage of all correctly classified elements in all
elements of the data set. In contrast, the error rate describes the percentage of all
negatively classified elements in all elements of the data set.

Accuracy =
TP + TN

TP + FN + FP + TN
(9)

ErrorRate =
FP + FN

TP + FN + FP + TN
(10)

where TP are the values that were correctly classified, TN are the values that were correctly
classified as negative, FP are the values that were falsely classified as positive, and FN are
the values that were falsely classified as negative.
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4 Evaluation

This chapter describes the experiments conducted to answer the research questions
introduced in section 2.6. Furthermore, all necessary implementation steps to conduct the
experiments are explained. The research methods required for this were formally introduced
in chapter 3. Finally, the results of the conducted experiments can be found in chapter
5.

First, the experiments to analyse the influence of big five personality traits on dialogue
qualities are described. Then, the implementation of the continuous turn-taking model that
is based on nonverbal features is described.

4.1 Influence of Big Five Personality Traits on Dia-

logue Qualities

This experiment aims to analyse whether differences in Big Five personality factors influence
nonverbal qualities in dialogue. The results could help to better understand individuals’
nonverbal communication styles, which can be useful for the design of turn-taking models in
spoken dialogue systems. This experiment therefore addresses research question Q1. In
order to analyse the effect of Big Five personality traits on nonverbal qualities in dialogue,
the following approach is taken.

For all qualities, only the population of players is considered. Facilitators are not examined
together with the players since their role in the dialogues is fundamentally different from the
role of the players. Furthermore, the facilitators are not examined separately since only three
of them exist. This means the overall population of facilitators is too small to draw any
conclusions. All players are grouped into either a "Low" or a "High" group for all Big Five
personality factors. Since the overall population of players is limited to 34, binary
classification is chosen so that the group sizes remain large enough to make statistically
relevant claims. Players with a percentile score of ≥ 50 are grouped into the respective
"High" group of the factor, while players with a percentile score of < 50 are grouped into
the "Low" group of the respective factor. These percentile scores are provided as a part of
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the MULTISIMO dataset (see section 3.1). The distributions of players for all groups are
shown in table 4.1. All "High" groups contain 18 players, while the "Low" groups contain 16
players. This is due to the fact that the percentile values of the players were normed to the
total population of participants when the MULTISIMO dataset was created. This means that
the "High" and "Low" groups of personality factors should not be understood as absolute
values, but rather in relation to the other participants in the experiment (e.g. a player with
"High" extroversion is more extroverted than the average player in the experiment).

Table 4.1: Distribution of players for the "High" and "Low" groups of the respective Big Five
personality factor

Factor Number of Players in "High" Group Number of Players in "Low" Group
Extroversion 18 16
Agreeableness 18 16
Neuroticism 18 16
Openness 18 16
Conscientiousness 18 16

All examined dialogue qualities are calculated for all players in the next step by looping over
all CSV files in the MULTISIMO dataset. The specific calculations for the dialogue qualities
are described below. With the calculated qualities, a dataframe with the following columns
is constructed:

• PLAYER - contains the ID of the player

• EXT - contains 1 if the player is in the "High" extroversion group, 0 otherwise

• AGR - contains 1 if the player is in the "High" agreeableness group, 0 otherwise

• CON - contains 1 if the player is in the "High" conscientiousness group, 0 otherwise

• NEU - contains 1 if the player is in the "High" neuroticism group, 0 otherwise

• OPE - contains 1 if the player is in the "High" openness group, 0 otherwise

• Columns for all examined dialogue qualities - contain calculated results of the
respective dialogue quality

For all examined qualities and personality traits, the original dataframe is then split into two
dataframes. The first dataframe contains all players who are part of the "High" group of the
examined personality factor and their respective dialogue quality values. The second
dataframe contains all players who are part of the "Low" group of the examined personality
factor and their respective dialogue quality values. A Wilcoxon Rank Sum test is then
conducted to determine if there is a statistically significant difference in dialogue qualities
between the group with low/high scores on each Big Five personality factor. Furthermore,
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the mean and standard deviation of the respective dialogue quality is calculated for all
groups.

In section 3.4.2 all assumptions were described which have to be fulfilled for using the
Wilcoxon rank sum test. In the following, it is verified whether these assumptions are all
met.

1. The dependent variable (the respective dialogue quality) is continuous

2. The independent variable (the respective personality trait) is dichotomous because of
the classification in Low/High

3. The third assumption is the independence of observations. This is given because no
player can be in the "Low" group as well as in the "High" group at the same time.
Furthermore, the classification of a player is not influenced by any other player.
Therefore, the independence of observations is given.

All assumptions are fulfilled, and the Wilcoxon Rank Sum test can be used. In the following,
the calculated dialogue qualities are described in detail.

Relative Speech Time

This quality is intended to examine whether players with a certain personality factor speak
significantly more or less during a dialogue. The relative speech time of a player is calculated
by dividing the sum of the duration of all turns of a player by the total duration of the
dialogue. The sum of the duration of a player’s turns is calculated by filtering the
preprocessed CSV file (as described in section 3.2) for the ID of the respective player
(including speech activity with overlap). Then, the sum of the DURATION2 column is
calculated. The total duration of the dialogue is calculated by filtering for the max END2
value in the CSV file. A significant difference in personality factors could help dialogue
systems predict the speech activity of a person.

Relative Speech Time =
Sum of the duration of all turns of a player

Total duration of the dialogue
(1)

Average Time Between Turns

This quality is intended to examine how much time players with certain personality factors
between their speech activities. This quality is calculated by subtracting the END2 value of
a turn from the START2 value of that player’s next turn. A significant difference in
personality factors could help dialogue systems predict how likely a person’s speech activity
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is at a given time.

Average Time Between Turns =
Sum of difference between turns of a player

Total turns of a player
(2)

Average Turn Duration

This quality is intended to examine whether players with a certain personality factor tend to
take longer/shorter turns. The average turn duration of a player is calculated by filtering the
dataset for the ID of the respective player and then taking the mean of the DURATION2
column. A significant difference in personality factors could help dialogue systems predict
when a person will finish their turn.

Average Turn Duration =
Sum of the duration of all turns of a player

Total turns of a player
(3)

Number of Pauses

This quality is intended to examine whether players with a certain personality factor take
more pauses during a dialogue. [Sacks et al., 1974] define a pause as a pattern where a
duration of silence happens within the turn of a speaker. This can happen when a speaker
stops speaking for a while but does not yield the turn or when a speaker stops speaking and
no one else is willing to take the turn, so the speaker continues their turn after a while. The
pattern searched for in the dataset to calculate this quality is illustrated in figure 4.1. To
avoid overstating this metric by players who talk more/make more turns, the player’s
number of pauses is divided by that player’s total number of turns. A significant difference
in personality factors could help dialogue systems predict whether a speaker intends to yield
their turn or not after a duration of silence.

Figure 4.1: Pattern by which the total number of pauses of a player in the dataset is calculated

Number of Pauses =
Number of pauses taken by a player

Total turns of a player
(4)

Number of Left Gaps

This quality is intended to examine whether players with a certain personality factor leave
more gaps when taking their turn. [Sacks et al., 1974] define a gap as a pattern in which a
duration of silence occurs between turns by two different speakers. The pattern searched for
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in the dataset to calculate this quality is illustrated in figure 4.2. To avoid overstating this
metric by players who talk more/make more turns, the player’s number of gaps is divided by
that player’s total number of turns. A significant difference in personality factors could help
to better understand the turn-taking style of people with these personality factors.

Figure 4.2: The two patterns by which the total number of gaps left by a player in the dataset
is calculated

Number of Left Gaps =
Total gaps left by a player

Total turns of a player
(5)

Average Pause Duration

This quality is intended to examine whether players with a certain personality factor tend to
take longer/shorter pauses. The same definition of a pause as above applies. This quality is
calculated by taking the average of the DURATION2 column for the pauses that were
identified above. A significant difference between personality traits could be useful
information for a spoken dialogue system to decide when a person will start speaking again
after they take a pause.

Average Pause Duration =
Sum of duration of pauses of a player
Total number of pauses by a player

(6)

Average Gap Duration

This quality is intended to examine whether players with a certain personality factor tend to
leave longer/shorter gaps. The same definition of a gap as above applies. This quality is
calculated by taking the average of the DURATION2 column for the gaps that were
identified above. A significant difference between personality traits could be helpful
information for a spoken dialogue system to predict the speech activity of a person after a
gap.

Average Gap Duration =
Sum of duration of gaps left by a player
Total number of gaps left by a player

(7)
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Turns Taken with no Gap and no Overlap

This quality is intended to examine whether players with a certain personality factor tend to
take turns with no gap and no overlap rather than leaving a gap. The pattern searched for
in the dataset to calculate this quality is illustrated in figure 4.3. A significant difference in
personality factors could help to better understand the turn-taking style of people with these
personality factors.

Figure 4.3: The two patterns by which the total number of gaps left by a player in the dataset
is calculated

Turns with No Gap No Overlap =
Turns taken by a player with no gap and no overlap

Total number of turns by a player
(8)

Caused Interruptions

This quality is intended to examine whether players with a certain personality factor tend to
cause more/fewer interruptions in dialogue. A caused interruption is defined as a pattern in
which a player engages in joint speech after the turn of a different player. The patterns
searched for in the dataset to calculate this quality are illustrated in figure 4.4. To avoid
overstating this metric for players with longer dialogues, the number of interruptions caused
is divided by the total length of the dialogue in question. A significant difference in
personality factors could help to better understand the turn-taking style of people with these
personality factors.
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Figure 4.4: The four patterns in the dataset which are counted as a "caused interruption"

Caused Interruptions =
Interruptions by a player

Total duration of the dialogue
(9)

Interruptions

This quality is intended to examine whether players with a certain personality factor tend to
get interrupted more/less. An interruption is defined as a pattern where a player has a solo
turn followed by a turn with joint speech (containing the ID of the player). Furthermore, an
interruption is defined as a pattern in which joint speech (containing the ID of the player)
follows a turn of the player and a duration of silence. This indicates that the player was
intending to take a pause, but an interlocutor did not understand that the turn of the player
was not finished. The pattern searched for in the dataset to calculate this quality is
illustrated in figure 4.5. The player examined can be understood as the role of the user of a
spoken dialogue system. A significant difference in personality factors could therefore help to
better understand the turn-taking style of individuals in order to lessen the amount of
interruptions caused by a spoken dialogue system.

35



Figure 4.5: The two patterns in the dataset which are counted as an instance of "getting
interrupted"

Interruptions =
Instances in which a player gets interrupted

Total duration of the dialogue
(10)

Total Laughter Duration

This quality is intended to examine whether players with a certain personality factor tend to
laugh more during dialogue than other players. This quality is calculated by summing up the
DURATION2 column for the laughter sections of the respective player in the dataset. To
avoid overstating this metric by players with longer dialogues, this metric is divided by the
total duration of the dialogue.

Total Laughter Duration =
Sum of the duration of all laughter of a player

Total duration of the dialogue
(11)

Average Laughter Duration

This quality is intended to examine whether players with a certain personality factor tend to
engage in longer/shorter periods of laughter. This quality is calculated by taking the average
of the DURATION2 column for the laughter sections of the respective player. Players with
no laughter are not considered in this quality. A significant difference in personality factors
could help to better predict the end of speech activity for a person.

Average Laughter Duration =
Total duration of laughter of a player
Total instances of laughter of a player

(12)

Ratio of Discourse to Mirthful Laughter

This quality is intended to examine whether players with a certain personality factor tend to
engage more in discourse or mirthful laughter. Players with no laughter are not considered in
this quality. This quality is calculated by counting both the instances of "mirthful" and
"discourse" laughter by examining the ACTION column in the dataset. A significant
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difference in personality factors could help to better understand the communication style for
a person.

Discourse to Mirthful Laughter =
Instances of discourse laughter of a player
Instances of mirthful laughter of a player

(13)

Ratio of Solo to Shared Laughter

This quality is intended to examine whether players with a certain personality factor tend to
engage more in solo than shared laughter. Players with no laughter are not considered in
this quality. This quality is calculated by counting both the instances of "solo" and "shared"
laughter by examining the ACTION column in the dataset. A significant difference in
personality factors could help to better understand the communication style for a
person.

Solo to Shared Laughter =
Instances of solo laughter of a player

Instances of shared laughter of a player
(14)
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4.2 Turn-Taking Model Based on Nonverbal Features

This experiment aims to analyse how a continuous turn-taking model performs that utilises
nonverbal qualities in dialogue as features. As it was discussed in 2.2.2, continuous
turn-taking models are state of the art. A logistic regression model is built that predicts
future speech activity in the dialogues of the MULTISIMO dataset. For this, the task of
predicting future speech activity is modelled as a time series prediction problem. The task of
predicting speech activity can be understood as making turn taking decisions, since by
predicting the next speaker for every time segment the model predicts whether a speaker is
holding or yielding their turn. This experiment addresses research question Q3. In order to
build the logistic regression model for the turn-taking predictions following approach is
proposed.

First, the dialogue CSV files are filtered for the rows which contain the "Turns" annotations
(all rows which have the value "Turns" in the TYPE column). These annotations contain
the segmentation and timing of the participants’ turns. The ACTION column contains the
ID of the participant who is currently speaking. IDs starting with a "P0" stand for players,
IDs starting with a "M0" stand for the facilitators and "(no speaker)" indicates a segment
of silence. Furthermore, turns which contain a "+" (such as "P048 + P049") indicate that
there was an overlap between speakers. ACTION is the target value which is meant to be
predicted by the logistic regression model. Figure 4.6 shows the structure of the "Turns"
annotations in a CSV file. The START2 and END2 columns indicate the start and end time
of the respective turn.

Figure 4.6: Structure of the "Turns" annotations in a CSV file

The START2 and END2 columns are converted to datetime format and the index of the
CSV file is set to START2. In the next step, the index of the CSV file is re-sampled to a
frequency of 50 ms. The resulting NaN values in the dataframe are filled using the forward
fill method. This means, the last valid value is propagated forward. On average, the files
have a row count of 11205 after the re-sampling. Lastly, the IDs of the participants are
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replaced with numerical values to make them processable for a machine learning model.
Overlaps in speech between players is coded with the same numerical value regardless of
which players overlap in speech. Lastly, the TYPE, TYPE2, START, END, DURATION and
DURATION2 columns are dropped since they have no further use for the machine learning
model. Figure 4.7 shows a preprocessed CSV file after the steps mentioned above have been
applied.

Figure 4.7: Preprocessed CSV file for use in the machine learning model

In the next step, features are constructed for the logistic regression model. First,
lag-features are created for the ACTION column. These features consider the past value of
the target variable (in this case the ACTION column). The target value from n steps ago is
examined to predict future values of the target variable. In this case, lag-features from n=1
to n=20 are created (sample rate is 50 ms, so for example the lag-feature with n=20
considers the target value from one second ago). Lag-features have the limitation that they
can’t predict sudden changes in the target value. Predictions that are purely based on these
features tend to lag behind the actual value. Therefore, other features have to be created.
Next, the "consecutive" feature is created which counts how many time steps ago the target
value last changed its value. This feature is intended to capture how long the current turn is
lasting. Lastly, rolling-features are created for each unique value in the ACTION column and
for time windows of 0.3 seconds, 0.5 seconds, 1 second, 3 seconds and 5 seconds. These
features, consider the rolling count for the respective value in the ACTION column in the
respective time frame. For example, the rolling feature for value 1 (player 1 speaking) in a
time frame of 3 seconds counts, how many target values in the past 3 seconds were of value
"1". In total, 47 feature columns were created after these preprocessing steps. Since values
up to five seconds from the past are considered as features, the first five seconds of each
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dialogue have feature columns with "NaN" values and are therefore dropped. The features
are then iteratively pruned using the RFE algorithm described in section 3.3.2. The
performance of the final model is then reported.

The same preprocessing steps as above are applied for the laughter and gaze annotations
(these are only available for two sessions) to construct features for laughter and gaze. For
the laughter features, the annotations from the laughter sections and the non-laughter
sections are concatenated to one dataframe. All unique actions (mirthful laughter, discourse
laughter, no laughter) are coded as numerical values. In the next step, the features are
constructed for the laughter annotations in the same way as for the speech distribution. The
same procedure applies for the gaze annotations. For each participant, the gaze annotations
are encoded in numerical values. On this basis, the gaze features are created as described
above for the speech distributions. Figure 4.8 shows a visualisation of speech activity and
laughter in one of the dialogues after the preprocessing steps have been completed. This
activity should be predicted by the constructed machine learning model.

Figure 4.8: Visualisation of speech activity in a dialogue
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5 Results

This chapter presents and discusses the results of the experiments that were introduced in
chapter 4. First, the results of the experiments described in section 4.1 are presented,
followed by the results of the experiments described in section 4.2.

5.1 Influence of Big Five Personality Traits on Dia-

logue Qualities

For each quality, the mean and standard deviation are reported for the total population of
players as well as for the groups filtered by the low/high value of the respective personality
trait. In addition, the two-sided Wilcoxon Rank Sum test results are given for each
comparison of the Low/High groups for each personality factor. Results with a p-value <
0.01 are considered highly significant (denoted by a ***), results with a p-value < 0.05 are
considered significant (denoted by a **) and results with a p-value < 0.1 are considered to
be approaching significance (denoted by a *). The sample size for each inspected quality is
34. Lastly, the results are interpreted for each quality.

Relative Speech Time

Table 5.1 shows that the openness factor has a statically significant influence on the relative
speech time quality. Table 5.2 shows that players with a higher openness tend to speak more
than players with a low openness which seems intuitive according to the definition of
openness in the Big Five model. Furthermore, it is interesting to note that the extroversion
factor does not seem to make a difference. It is also interesting to note that the overall
mean for the relative speech time is 0.331, which suggests that all participants (including
the facilitator) in the dialogue contribute equally to the conversation on average.
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Table 5.1: Results of the two-sided Wilcoxon Rank Sum test comparing the low/high groups
for each personality factor for relative speech time.

EXT AGR NEU CON OPE
p-value 0.9038 0.9862 0.5789 0.2926 0.0113**
U 148.0 145.0 159.0 113.0 216.0

Table 5.2: Means and standard deviations grouped by high/low values of the respective
personality factor for relative speech time

EXT AGR
Overall High Low High Low

Mean 0.331 0.332 0.330 0.334 0.328
Std. Dev. 0.079 0.074 0.087 0.086 0.075

NEU CON OPE
High Low High Low High Low

Mean 0.338 0.323 0.319 0.345 0.361 0.293
Std. Dev. 0.085 0.073 0.081 0.077 0.082 0.059

Average Time Between Turns

Table 5.3 shows that the difference in the average time between turns is approaching
significance for the openness factor. Table 5.4 shows that players with a high openness score
tend to take turns in shorter succession than players with a low openness score. This result
is in line with the description of the openness trait in the Big Five model. Again, the
extroversion trait does not seem to have an impact on this quality.

Table 5.3: Results of the two-sided Wilcoxon Rank Sum test comparing the low/high groups
for each personality factor for average time between turns.

EXT AGR NEU CON OPE
p-value 0.9312 0.5691 0.8896 0.4581 0.0564*
U 141.0 127.0 138.0 156.0 87.0
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Table 5.4: Means and standard deviations grouped by high/low values of the respective
personality factor for average time between turns

EXT AGR
Overall High Low High Low

Mean 2.143 2.117 2.173 2.017 2.255
Std. Dev. 0.821 0.821 0.847 0.696 0.924

NEU CON OPE
High Low High Low High Low

Mean 2.128 2.162 2.224 2.053 1.920 2.426
Std. Dev. 0.846 0.817 0.800 0.861 0.816 0.762

Average Turn Duration

The data does not support an influence of any personality factor on the average turn
duration of a player. Table 5.6 shows that the means are relatively similar for all examined
groups. Furthermore, it is interesting to note that the average turn duration for the players
is only one second which seems very short. This can be explained by the game setting in
which the dialogues were conducted.

Table 5.5: Results of the two-sided Wilcoxon Rank Sum test comparing the low/high groups
for each personality factor for average turn duration.

EXT AGR NEU CON OPE
p-value 0.8766 0.1840 0.4878 0.3427 0.2670
U 139.0 105.0 163.0 116.0 175.0

Table 5.6: Means and standard deviations grouped by high/low values of the respective
personality factor for average turn duration

EXT AGR
Overall High Low High Low

Mean 1.013 1.010 1.015 0.974 1.046
Std. Dev. 0.161 0.186 0.132 0.114 0.190

NEU CON OPE
High Low High Low High Low

Mean 1.029 0.992 0.998 1.029 1.030 0.990
Std. Dev. 0.168 0.155 0.162 0.163 0.141 0.186

Number of Pauses

No significance can be observed for the number of pauses taken. This is mainly due to the
fact that the standard deviation is very high for all groups. This could hint that the way the
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metric was calculated is not appropriate for the dataset. In order to examine this quality in
more detail, a narrower definition of a "pause" might be required in terms of timing. Also, it
might be possible that the annotations of the dataset are not accurate enough to capture
very short pauses during speech.

Table 5.7: Results of the two-sided Wilcoxon Rank Sum test comparing the low/high groups
for each personality factor for the number of pauses.

EXT AGR NEU CON OPE
p-value 0.7731 0.6655 0.4663 0.3954 1.0000
U 144.5 123.5 164.0 111.0 133.5

Table 5.8: Means and standard deviations grouped by high/low values of the respective
personality factor for number of pauses

EXT AGR
Overall High Low High Low

Mean 0.052 0.055 0.048 0.046 0.057
Std. Dev. 0.038 0.040 0.036 0.031 0.043

NEU CON OPE
High Low High Low High Low

Mean 0.058 0.044 0.043 0.062 0.049 0.056
Std. Dev. 0.047 0.021 0.030 0.044 0.031 0.046

Average Pause Duration

No significance can be observed for the average pause duration. [Heldner and Edlund, 2010]
report an average pause duration of 730 ms for English dialogue. This is notably shorter
than the average pause duration that was found in this experiment. Table 5.10 shows that
for all players, the average pause duration is 1363 ms. First, this could confirm the
assumption made before that the annotations are not accurate enough to capture such short
periods of silence. Also, this result could be attributed to the game mode in which the
dialogues were recorded. Since the players are taking a quiz, they just might need time to
think for appropriate answers, rather than taking a pause during speech. For future
experiments, it might therefore be helpful to define pauses differently for this dataset.

Table 5.9: Results of the two-sided Wilcoxon Rank Sum test comparing the low/high groups
for each personality factor for average pause duration.

EXT AGR NEU CON OPE
p-value 0.8359 0.2407 0.5554 0.2477 0.6149
U 150.5 178.5 125.0 110.0 127.5
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Table 5.10: Means and standard deviations grouped by high/low values of the respective
personality factor for average pause duration

EXT AGR
Overall High Low High Low

Mean 1.324 1.464 1.166 1.456 1.207
Std. Dev. 0.638 0.812 0.312 0.737 0.528

NEU CON OPE
High Low High Low High Low

Mean 1.159 1.533 1.239 1.419 1.381 1.252
Std. Dev. 0.331 0.857 0.587 0.696 0.806 0.337

Number of Gaps

Table 5.11 shows that the extroversion factor has an influence on the number of gaps a
player leaves. Table 5.12 shows that players with a high extroversion factor leave more gaps
than players with a low extroversion factor. This result is a bit surprising since it seems more
intuitive that more introverted players leave more gaps.

Table 5.11: Results of the two-sided Wilcoxon Rank Sum test comparing the low/high groups
for each personality factor for the number of gaps.

EXT AGR NEU CON OPE
p-value 0.0338** 0.1086 0.1550 0.7430 0.3858
U 206.0 97.0 101.0 154.0 117.0

Table 5.12: Means and standard deviations grouped by high/low values of the respective
personality factor for number of gaps

EXT AGR
Overall High Low High Low

Mean 0.084 0.096 0.071 0.074 0.092
Std. Dev. 0.035 0.033 0.034 0.032 0.036

NEU CON OPE
High Low High Low High Low

Mean 0.076 0.094 0.085 0.082 0.078 0.091
Std. Dev. 0.033 0.036 0.039 0.031 0.034 0.036

Average Gap Duration

This quality shows no significant difference between the groups. [Heldner and Edlund, 2010]
reports an average gap duration of 400-600 ms in English dialogues which is notably shorter
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than the average gap duration observed in the dataset. This could be due to similar reasons
as for the duration of the pauses.

Table 5.13: Results of the two-sided Wilcoxon Rank Sum test comparing the low/high groups
for each personality factor for te average duration of gaps

EXT AGR NEU CON OPE
p-value 0.8766 0.3605 0.2980 0.9312 0.7549
U 149.0 117.0 173.0 141.0 133.0

Table 5.14: Means and standard deviations grouped by high/low values of the respective
personality factor for average gap duration

EXT AGR
Overall High Low High Low

Mean 1.363 1.404 1.316 1.267 1.448
Std. Dev. 0.556 0.616 0.495 0.558 0.556

NEU CON OPE
High Low High Low High Low

Mean 1.387 1.333 1.364 1.361 1.330 1.405
Std. Dev. 0.386 0.732 0.591 0.534 0.564 0.562

Turns Taken with no Gap and no Overlap

This quality shows no significant difference between the groups. Furthermore, the means are
very similar for each group. This means that the data does not support any evidence that
players with a certain personality type prefer taking turns with no gap and no overlap more
than other players.

Table 5.15: Results of the two-sided Wilcoxon Rank Sum test comparing the low/high groups
for each personality factor for turns taken with no gap and no overlap

EXT AGR NEU CON OPE
p-value 0.6413 0.7957 0.5438 1.0000 0.5908
U 130.0 152.0 160.5 144.0 158.5
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Table 5.16: Means and standard deviations grouped by high/low values of the respective
personality factor for amount of turns taken with no gap and no overlap

EXT AGR
Overall High Low High Low

Mean 0.166 0.163 0.171 0.169 0.165
Std. Dev. 0.041 0.042 0.040 0.035 0.046

NEU CON OPE
High Low High Low High Low

Mean 0.172 0.159 0.164 0.169 0.167 0.166
Std. Dev. 0.046 0.033 0.037 0.046 0.036 0.047

Caused Interruptions

This quality shows no significant difference between the groups. The mean for the "high"
agreeableness group is higher than for the "low" agreeableness group, which seems
counter-intuitive according to the definition of the Big Five traits. Also, the mean for caused
interruptions is higher for the players with a high openness compared to players with low
openness. This result seems to be in line with the previous results that players with high
openness have more speech activity and leave less time between their turns. Therefore, it
becomes more likely that they interrupt other participants. However, 5.17 shows no
statistical significance, so the results should not be over-interpreted.

Table 5.17: Results of the two-sided Wilcoxon Rank Sum test comparing the low/high groups
for each personality factor for caused interruptions

EXT AGR NEU CON OPE
p-value 0.8225 0.6290 0.4249 0.8766 0.4351
U 151.0 158.5 119.0 139.0 165.5

Table 5.18: Means and standard deviations grouped by high/low values of the respective
personality factor for average amount of caused interruptions

EXT AGR
Overall High Low High Low

Mean 0.126 0.127 0.125 0.133 0.120
Std. Dev. 0.042 0.048 0.036 0.034 0.049

NEU CON OPE
High Low High Low High Low

Mean 0.124 0.129 0.127 0.125 0.131 0.120
Std. Dev. 0.044 0.042 0.042 0.043 0.039 0.047
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Interruptions

Table 5.19 shows a significant difference in interruptions for the openness factor. Table 5.22
shows that players with high openness are more likely to be interrupted than players with low
openness. This result is in line with the previous result that people with a high openness
generally speak more throughout the dialogue. Also, according to the documentation of the
MULTISIMO dataset, it is the job of the facilitator to ensure both players contribute equally
to the dialogue. By speaking more, players with high openness might be more likely to force
a reaction by the facilitator.

Table 5.19: Results of the two-sided Wilcoxon Rank Sum test comparing the low/high groups
for each personality factor for interruptions

EXT AGR NEU CON OPE
p-value 0.9038 0.5459 0.3144 0.9038 0.0201**
U 148.0 162.0 113.0 140.0 210.0

Table 5.20: Means and standard deviations grouped by high/low values of the respective
personality factor for average amount of times a player got interrupted

EXT AGR
Overall High Low High Low

Mean 0.046 0.046 0.046 0.047 0.045
Std. Dev. 0.018 0.018 0.019 0.017 0.020

NEU CON OPE
High Low High Low High Low

Mean 0.044 0.049 0.045 0.047 0.053 0.037
Std. Dev. 0.020 0.017 0.015 0.022 0.019 0.014

Total Laughter Duration

This quality shows no significant difference between the groups. Also, the means are very
high for all groups. Therefore, this data does not provide any evidence that the total
duration of laughter is influenced by the personality of the player.

Table 5.21: Results of the two-sided Wilcoxon Rank Sum test comparing the low/high groups
for each personality factor for total laughter duration

EXT AGR NEU CON OPE
p-value 0.2751 0.7339 0.9043 0.7819 0.249
U 130.5 118.0 120.5 112.5 89.5
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Table 5.22: Means and standard deviations grouped by high/low values of the respective
personality factor for total laughter duration

EXT AGR
Overall High Low High Low

Mean 0.033 0.034 0.031 0.031 0.034
Std. Dev. 0.021 0.020 0.022 0.019 0.023

NEU CON OPE
High Low High Low High Low

Mean 0.032 0.033 0.033 0.032 0.030 0.036
Std. Dev. 0.020 0.022 0.021 0.020 0.019 0.022

Average Laughter Duration

Similarly to the total laughter duration, this quality does not show a significant difference
between the groups. This also supports the assumption that the personality type of the
players does not influence laughter.

Table 5.23: Results of the two-sided Wilcoxon Rank Sum test comparing the low/high groups
for each personality factor for average laughter duration

EXT AGR NEU CON OPE
p-value 0.6591 0.2634 0.8822 0.4927 0.8709
U 106.0 78.0 112.0 95.0 92.0

Table 5.24: Means and standard deviations grouped by high/low values of the respective
personality factor for average laughter duration

EXT AGR
Overall High Low High Low

Mean 0.928 0.921 0.937 0.906 0.949
Std. Dev. 0.191 0.170 0.219 0.195 0.192

NEU CON OPE
High Low High Low High Low

Mean 0.972 0.872 0.900 0.961 0.928 0.929
Std. Dev. 0.180 0.198 0.176 0.209 0.174 0.218

Ratio of Discourse to Mirthful Laughter

This quality shows no significant difference between the groups. The standard deviations are
very high for all groups. By removing outliers, it might be possible to construct a statistical
significance for the openness factor.
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Table 5.25: Results of the two-sided Wilcoxon Rank Sum test comparing the low/high groups
for each personality factor for the ratio discourse/mirthful laughter

EXT AGR NEU CON OPE
p-value 0.8798 0.4495 0.2236 0.7479 0.1019
U 132.0 107.0 158.5 118.5 169.5

Table 5.26: Means and standard deviations grouped by high/low values of the respective
personality factor for the ratio discourse/mirthful laughter

EXT AGR
Overall High Low High Low

Mean 0.945 0.982 0.903 0.845 1.033
Std. Dev. 0.989 1.002 1.007 0.886 1.090

NEU CON OPE
High Low High Low High Low

Mean 1.104 0.740 0.932 0.960 1.082 0.769
Std. Dev. 1.106 0.806 0.994 1.017 1.052 0.907

Ratio of Solo to Shared Laughter

This quality shows no significant difference between the groups. The standard deviations are
very high for all groups. By removing outliers it might be possible to construct a statistical
significance for the openness factor and the extroversion factor. The mean of the "High"
extroversion group is considerably lower than for the "Low" group, suggesting that highly
extroverted players rather engage in solo than shared laughter. This seems reasonable since
these individuals are characterised as outgoing and very sociable according to the Big Five
model. However, the high standard deviation does not allow any statistically relevant
statements.

Table 5.27: Results of the two-sided Wilcoxon Rank Sum test comparing the low/high groups
for each personality factor for the ratio solo/shared laughter

EXT AGR NEU CON OPE
p-value 0.3630 0.9697 0.7030 0.4599 0.1422
U 103.0 126.0 115.5 107.5 87.0
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Table 5.28: Means and standard deviations grouped by high/low values of the respective
personality factor for the ratio solo/shared laughter

EXT AGR
Overall High Low High Low

Mean 1.557 1.296 1.852 1.514 1.594
Std. Dev. 1.057 0.511 1.414 0.901 1.204

NEU CON OPE
High Low High Low High Low

Mean 1.619 1.477 1.435 1.694 1.532 1.589
Std. Dev. 1.320 0.610 0.883 1.243 1.338 0.566

5.1.1 Summary

The results suggest an influence of the openness trait on the relative speech time, the
average time between turns and the interruptions quality. Furthermore, the results suggest
an influence of the extroversion trait on the number of left gaps in dialogue. Conversely,
these results might hint that these qualities are good predictors for the respective personality
trait. No significant difference could be found for the remaining qualities. It is interesting to
note that the openness trait shows the most influence on the calculated qualities. In section
2.3 it was discussed that a previously conducted literature review by [Ahmad et al., 2022]
showed the least found dialogue cues for the openness factor. Furthermore, some qualities
showed very high standard deviations (e.g., the qualities related to laughter). For future
experiments, it might be useful to think of an automated method to remove outliers in the
data. For example, it is common to remove values outside the range of three standard
deviations for data that follows a normal distribution. Lastly, the definitions of a pause and a
gap might have to be reconsidered since their average duration was significantly different
from the values reported in the literature.

5.2 Turn-Taking Model Based on Nonverbal Features

This section presents the results from the experiment described in section 4.2 and compares
them against a last-known value baseline. First, the logistic regression model is trained to
predict general speech activity for all values from the ACTION column (silence, facilitator
speaking, player 1 speaking, player 2 speaking, joint speech). After that, the logistic
regression model is trained to predict only the speech activity of one participant (the
facilitator) in the dialogue as a binary classification problem. For all models, an 80-20
train-test split is applied which is a commonly accepted standard value.

The last known value is used as a baseline predictor. This means that the last known value
is projected n steps into the future to make a prediction. For example, if the last known
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value is "player 1 speaking", the baseline would predict that in n steps into the future, player
1 is still speaking.

5.2.1 Speech Activity Prediction

First, the performance of the model is examined with only features from the speech
distribution. Accuracy is used as a measure of performance since speech activity is about
balanced, as was shown in the previous experiment. Table 5.29 shows the accuracy of the
model for 250 ms in the future, table 5.30 shows the accuracy for 1 s in the future and table
5.31 shows the accuracy for 2 s in the future. All three tables show that the performance of
the logistic regression model is very close to the baseline. Overall, the accuracy decreases
the more time steps are predicted in the future. This is expected since it becomes
increasingly harder to predict values in the future. For session 23, the results of the logistic
regression model are consistently worse than the baseline. In a few cases (e.g., S14 and S22
for 1 s in the future), the accuracy of the logistic regression model is slightly better than the
baseline, but not significantly. Adding the laughter features has a slightly positive effect.
The models used an "l1" regularisation with a C parameter of 100. Adjusting the C
parameter of the model to control regularisation does not seem to improve the accuracy of
the model. For feature selection, the RFE algorithm removes 10 features per iteration, and
the accuracy of the model is compared for 10, 20, 30, 40 and 50 total features. The best
performing model is reported respectively. Irrespective of the number of steps predicted in
the future, the models largely used the lag features (50 ms - 150 ms) and rolling count
features for 0.3 seconds and 0.5 seconds to make their predictions. For the predictions 1 s
and 2 s into the future, the models started using the laughter features, while for the 250 ms
models, the laughter features were pruned. Features that considered values from over a
second ago were pruned in every trained model.
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Table 5.29: Accuracy of the logistic regression model predicting speech activity 250 ms in the
future. The accuracy for Log. Reg Model shows the performance based on speech distribution
feature. The following row shows the performance with added laughter features.

S02 S04 S05 S07 S08 S9 S10
Baseline 0.3841 0.5564 0.5022 0.4924 0.4821 0.4252 0.5316
Log. Reg. Model 0.3565 0.5454 0.4872 0.4903 0.3823 0.3354 0.5460
Log. Reg. + Laughter 0.3666 0.5560 0.4973 0.5010 0.4013 0.3544 0.5571

S11 S13 S14 S17 S18 S19 S20
Baseline 0.4894 0.4686 0.3824 0.3811 0.4333 0.3885 0.3446
Log. Reg. Model 0.4717 0.4477 0.4183 0.3724 0.3712 0.3321 0.3405
Log. Reg. + Laughter 0.4852 0.4566 0.4212 0.3820 0.3834 0.3500 0.3519

S21 S22 S23
Baseline 0.6052 0.2734 0.5170
Log. Reg. Model 0.6024 0.3009 0.4274
Log. Reg. + Laughter 0.6135 0.3111 0.4313

Table 5.30: Accuracy of the logistic regression model predicting speech activity 1 s in the
future. The accuracy for Log. Reg Model shows the performance based on speech distribution
feature. The following row shows the performance with added laughter features.

S02 S04 S05 S07 S08 S9 S10
Baseline 0.3841 0.5564 0.5022 0.4924 0.4821 0.4252 0.5316
Log. Reg. Model 0.3565 0.5454 0.4872 0.4903 0.3823 0.3354 0.5460
Log. Reg. + Laughter 0.3666 0.5560 0.4973 0.5010 0.4013 0.3544 0.5571

S11 S13 S14 S17 S18 S19 S20
Baseline 0.4894 0.4686 0.3824 0.3811 0.4333 0.3885 0.3446
Log. Reg. Model 0.4717 0.4477 0.4183 0.3724 0.3712 0.3321 0.3405
Log. Reg. + Laughter 0.4852 0.4566 0.4212 0.3820 0.3834 0.3500 0.3519

S21 S22 S23
Baseline 0.6052 0.2734 0.5170
Log. Reg. Model 0.6024 0.3009 0.4274
Log. Reg. + Laughter 0.6135 0.3111 0.4313
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Table 5.31: Accuracy of the logistic regression model predicting speech activity 2 s in the
future. The accuracy for Log. Reg Model shows the performance based on speech distribution
feature. The following row shows the performance with added laughter features.

S02 S04 S05 S07 S08 S9 S10
Baseline 0.3372 0.4370 0.3412 0.3881 0.3848 0.2849 0.4115
Log. Reg. Model 0.2769 0.4391 0.2820 0.4158 0.3706 0.2625 0.4522
Log. Reg. + Laughter 0.2881 0.4423 0.2991 0.4236 0.3821 0.2735 0.4610

S11 S13 S14 S17 S18 S19 S20
Baseline 0.3375 0.3888 0.4010 0.3509 0.3293 0.3216 0.2671
Log. Reg. Model 0.3770 0.3582 0.3999 0.3634 0.2888 0.2500 0.2761
Log. Reg. + Laughter 0.3826 0.3599 0.3981 0.3664 0.3012 0.2653 0.2769

S21 S22 S23
Baseline 0.4718 0.2845 0.3774
Log. Reg. Model 0.4668 0.2580 0.2990
Log. Reg. + Laughter 0.4752 0.2634 0.3050

Figure 5.1 and 5.2 show the predicted values plotted against the actual values on the
example of session 2. The figures suggest that the predictions lag behind the actual values
by a constant factor with a few exceptions in which the predictions are simply false.
Incidents in which the model predicts the false value rather than lagging behind the actual
value are increased for the model that predicts 1 s into the future. In order to verify the
assumption that the predictions lag behind the actual value by a constant factor, the
predictions are shifted backwards by n steps, where n is the number of time steps originally
predicted into the future. Table 5.32 shows the accuracy of the first five sessions with the
shifted predictions. Indeed, the accuracy was significantly increased, confirming that the
predictions lag behind the actual values with a constant offset. This means that the logistic
regression model mainly propagates the last known value, which is why the accuracy
observed above is so similar to the baseline.

Figure 5.1: Actual speech activity against predicted values for 250 ms in the future (on the
example of session 2)
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Figure 5.2: Actual speech activity against predicted values for 1 s in the future (on the example
of session 2)

Table 5.32: Accuracy of the logistic regression model predicting speech activity 250 ms in the
future after shifting the predictions

S02 S04 S07 S08 S09
Baseline 0.7427 0.8238 0.8165 0.7783 0.7917
Log. Reg. Model 0.9418 0.9626 0.9605 0.9560 0.9577

In the following, gaze features are added to the model in an attempt to improve the
predictive power of the logistic regression model. Table 5.33 shows the results of the model
with added gaze features. The gaze annotations were only available for two sessions in the
dataset (session 2 and session 18). For 250 ms, the performance is barely affected since the
gaze features are pruned during optimisation by the RFE algorithm. For 1 s and 2 s, the
model starts using the constructed gaze features. However, the performance is only
minimally improved compared to the model that only relies on the distribution of speech
activity as features. This behaviour is similar to the laughter features mentioned above. This
result is surprising since existing literature has shown that gaze is a predictor for turn-taking
in human dialogue (see section 2.1.3). Firstly, the poor performance of the gaze features
could be explained by the insufficient accuracy of the annotations. Eye movements are rapid,
and because the gaze annotations were manually generated, it seems likely that the
annotators have missed subtle changes in gaze. Another reason might be that the existing
lag and rolling features can not fully capture the complexity, and more complex features
have to be constructed.

Table 5.33: Performance of the logistic regression model predicting speech activity with added
gaze features.

250 ms 1 s 2 s
S02 S18 S02 S18 S02 S18

Baseline 0.7427 0.8020 0.3841 0.4333 0.3372 0.3293
Log. Reg. Model 0.7376 0.8032 0.3565 0.3712 0.2769 0.2888
Log Reg. + Gaze 0.7373 0.8030 0.3677 0.3833 0.2890 0.2943
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5.2.2 Facilitator Activity Prediction

This experiment aims to analyse whether the speech activity of one participant can be
predicted continuously. In contrast to the previous section, this is a binary classification.
The predicted target value is the speech activity of the facilitator (with joint speech). This
might be an easier task since the model only has to predict the turns of the facilitator.
Therefore, for this experiment, the target value is unbalanced, and performance is examined
with precision and recall.

Table 5.34 shows that the logistic regression model behaves similarly to the previous section.
The performance of the respective model is very close to the last-known value baseline.

Figure 5.3 shows the plot of the predicted target value against the actual value for 2 s into
the future. The figure shows that the same problem exists as in the previous experiment.
The predictions lag behind the actual value with a constant factor. The model can not
outperform the last-known value baseline.

Table 5.34: <Precision/Recall> of the logistic regression model predicting facilitator activity
250 ms in the future. Only the first four dialogues are reported since the pattern is the same
as in the previous experiment.

S02 S04 S05 S07
Baseline 0.7786/0.7878 0.8384/0.8384 0.8423/0.8493 0.8442/0.8442
Log. Reg. Model 0.7586/0.7505 0.8387/0.8324 0.8443/0.8431 0.8487/0.8510
Log. Reg. + Laughter 0.7551/0.7878 0.8390/0.8347 0.8421/0.8446 0.8473/0.8465

Figure 5.3: Actual facilitator activity against predicted values for 2 s in the future (on the
example of session 2)

5.2.3 Summary

The constructed logistic regression models can not outperform a last-known value baseline.
In some cases, the logistic regression models perform slightly better than the baseline, but
not significantly. Adding gaze and laughter features does not affect the predictions for 250
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ms in the future. Models that predict 1 s and 2 s in the future start utilising the additional
features. However, the observed improvement in performance is minimal. It was also shown
that the predictions lag behind the actual values by a constant factor. The predictive power
of the constructed models is therefore limited. To improve performance, trying a different
model architecture (such as LSTM) might be helpful. Constructing hand-crafted features
that can predict speech activity does not seem feasible.
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6 Conclusion

This dissertation presented an analysis of nonverbal signals with the aim of improving
turn-taking in spoken dialogue systems. Based on the literature review, the two research
objectives of analysing the influence of Big Five personality factors on nonverbal dialogue
qualities and the construction of a continuous turn-taking model were deduced. The analysis
of the influence of Big Five personality factors on nonverbal dialogue qualities provided
evidence that the openness factor influences the total time spoken in dialogue. Furthermore,
there is evidence that the openness factor influences the average time between turns of the
speaker and the number of times the speaker gets interrupted. There is also evidence that
the extroversion factor influences the number of left gaps by a speaker in dialogue. However,
these qualities were calculated for a very specific dialogue scenario. It, therefore, remains an
open question to which extent these qualities can be useful for improving turn-taking
predictions. The results should rather be understood as an encouragement to conduct
similar research on bigger datasets with a broader range of dialogue topics. No influence of
personality factors was found for the other dialogue qualities. This might be due to the
quality of the annotations or the inadequacy of the dataset for this specific task. It is also
possible that the way the qualities were calculated did not fully capture the complexity.

For the second research question, a logistic regression model was proposed that predicted
turn-taking decisions based on nonverbal features. However, the model was not able to
outperform a last-known value baseline. In particular, the addition of gaze and laughter
features did not improve the predictive power of the model.

6.1 Future Work

This dissertation leaves opportunities for future research. First of all, the qualities that were
shown to be influenced by the personality factors of the players should be validated on other
datasets. Conversely, it might be interesting to test on other datasets if these qualities are a
good predictor for personality types. Also, it can be interesting to explore the interaction
between personality types in the MULTISIMO corpus. For example, it may be investigated
whether there are differences in dialogue qualities when two very extroverted players interact
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with each other or when two introverted players interact with each other. For the presented
turn-taking model, it might be interesting to see whether a model based on an LSTM
architecture can improve the performance (since related research in the field has successfully
used this type of model before). Lastly, it remains a challenge to include the qualities that
were found to be influenced by personality type in an actual turn-taking model.
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