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Supervisor: Prof. Vasileios Koutavas

Property-based fuzz testing with coverage guidance mechanism has proven to be very
effective in finding bugs in high-level programs. This dissertation attempts to examine the
possibility of proving functional equivalency of two Java programs using such feedback-
directed fuzz testing techniques and semantic analysis, facilitated by a framework called
JQF. An equivalence checker called FuzzDiff, in the form of a Maven project, is devel-
oped to compare the functional behaviour of two simple java programs having method
with same signature and return type. JQF, which is based on JUnit QuickCheck, is
used as the engine for generating feedback-directed random inputs being fed into these
programs. A number of JUnit assertions determine the functional equivalence of the two
input programs over the two stages. A Generic Generator class is also designed and imple-
mented for generating random instances of custom Java objects. Moreover, the tool also
applies additional tests for semantic analysis of the two input programs, where method
invocations are traced and compared to comply with certain assertions. Finally, the tool
is evaluated on a number of test programs in benchmarks used by tools like Hobbit and
ARDiff, and the results are analyzed. Results show that FuzzDiff can effectively iden-
tify inequivalency but can be inconsistent in verifying equivalency of two Java programs.
During evaluation, FuzzDiff also finds an incorrectly classified equivalent pair of program
in ARDiff benchmark.
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Chapter 1

Introduction

1.1 Background and Motivation

Program Equivalence checking, a part of a discipline of formal verification in Computer

Science, is the scientific problem of formally proving that two methods or programs ex-

hibit the same behaviour functionally. It is a long-standing and key research problem

in the world of formal verification with several techniques and methodologies proposed

to address it. Program equivalence checking can be an undecidable problem depending

on the complexity of programs, and hence it is fairly difficult to devise an out-and-out

equivalence checking procedure for a pair of programs [27]. It is further challenging to

create a tool that would serve as an implementation to the checking procedure.

Applications of Program equivalence include verification of correctness of compilers [15],

Program synthesis [11] and correctness verification of code refactoring [32]. This study

focuses on the ultimate application i.e detecting program equivalence or in-equivalence

for verifying refactored programs. Code Refactoring is the process of re-structuring part

of a code or program without affecting its existing behaviour or functionality with respect

to other components of the program. As per a survey in 2019 [9], software engineers

spend 22% of their time in code refactoring tasks, which also includes validating if the

behaviour of the code is unchanged. In practice, the validation is done using regression

testing which involves manually creating a test suite that covers all possible scenarios and

then executing it to see if any failures occur. This process can be very time-consuming

and resource-dependent. If we can provide a utility that can be easily integrated into

a software development pipeline, it can improve the overall process of detecting defects

in code refactoring tasks. This forms the core motivation of the study: attempting to

simplify program verification post code refactoring.
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Program equivalence checkers are tools that compare the behaviour of two programs

based on features related to a program. Some make the judgement based on the syntax,

while others compare the functional behaviour and semantics. There are some existing

tools like SymDiff [22] and Hobbit [21] which try to decide equivalence using algorithms

based on differential verification and symbolic execution respectively. However, little has

been done in the field to address the same problem using property-based testing tech-

niques, specifically random sampling or fuzz testing. Moreover, the majority of the tools

available online are based on languages like OCaml, C++ and C. Very few are based on

object-oriented languages like Java and Scala. This paves the motivation for designing

a Java-based program equivalence checker, which would also contribute to the research

community working on Java verification tools.

When researching program equivalence checkers, it was observed that very few utilize

testing-based techniques for verification. Junit is a testing framework in Java that allows

developers to write and run unit test cases to test the behavior of methods inside classes

they have written. In industrial applications, Junit is heavily used and relied on for

quality assurance. These test cases execute user-provided mock objects as input to these

methods and verify if the output is expected as actual. A set of such test cases can cover

a range of scenarios (both positive and negative) where the program may exhibit different

behaviour, and hence is referred to as test coverage of a class. There is a possibility that

such a framework can be used as instrumentation for testing the behaviour of a refactored

method and then comparing its results with the original. But this would require the user

to provide manually curated inputs to both these methods, which can be time-consuming

and inefficient. This is where fuzz testing can come into play.

Fuzz testing is a testing technique that involves providing randomly generated inputs

into a computer program. It is a very popular technique, mainly used in automated

program monitoring in large-scale systems. JUnit QuickCheck [4] was found to be one

of the popular libraries that use the concept of fuzzing in JUnit testing by making use

of generators to feed randomly generated inputs into parameterized test methods. This

tool is inspired by the QuickCheck tool originally developed for random testing of Haskell

programs [16]. JQF [30], a tool built on top of JUnit QuickCheck, uses an algorithm

called Zest [31] that tunes these generators to produce ”semantically valid inputs” and

has proven to maximize code coverage in random testing.

Hence, through this study, we attempt to design a program equivalence checker which
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would apply fuzz testing using JQF to verify and compare the functional behaviour of a

pair of Java programs. The study mainly focuses on prototyping such a tool and testing

its effectiveness in program verification following real-world refactoring tasks.

The tool designed is Maven based and uses a suite of dependencies and plugins for pro-

viding a command line interface for the user to input the two programs and method name

to be fuzzed. The tool can be found at https://github.com/akashpatil7/FuzzDiff

We hope that researchers and developers find it convenient and productive to implement

new verification ideas using this flexible tool.

1.2 Research Question and Aim

This section outlines the research questions that this study is addressing and also proposes

hypotheses in terms of the potential of this tool. As discussed in the previous section,

the research aim of this study mainly revolved around solving the problem of program

equivalence. But the research questions we are trying to answer are:

Question 1: Can property-based testing techniques involving random sampling or fuzzing

be used to identify program equivalence of two Java methods?

Question 2: If yes, can a viable solution in the form of a tool be implemented to leverage

this methodology?

Question 3: To what level would its usage be effective in real-world scenarios?

With several techniques being devised to address program equivalence, it will be interest-

ing to see if fuzz testing proves to be one of the solutions that can be not just effective

but useful to compare two Java programs.

The hypothesis of this study is that : Though it is viable to develop such a tool but

it may not be the most efficient technique given the number of test executions on the

target method. While dealing with highly complex programs, the technique might not be

very viable as well, since there will be a range of scenarios to be considered in the overall

workflow of the tool. Hence, it is important to define the scope of the tool to support

elementary Java programs consisting of plain algorithms and using plain java objects and

data types like primitives and arrays.

The research aim is to create a prototype that implements a novel methodology of com-
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paring two programs for equivalence and lays the foundation for further integration in the

future.

1.3 Report Structure

This section gives a brief overview of how the study work is organized into different chap-

ters:

Chapter 2 discusses the state-of-the-art techniques in formal verification for program

equivalence. Few of the techniques also come in the form of a tool supporting a wide

range of languages. It will be essential to focus on tools built on JVM-based languages

like Java. It also covers the literature review of some important papers which expand on

the problem statement and provide solutions widely recognized in the research community.

Chapter 3 describes the problem statement in detail and covers important concepts

and definitions related to functional equivalence and property-based testing. This in-

cludes in-depth analysis of tools like JQF and Junit QuickCheck. It also describes the

design and implementation of a Generic Generator which addresses the shortcomings of

QuickCheck-based generators.

Chapter 4 covers the groundwork of the tool from design to the implementation phase,

expanding on different components of the system, functional requirements, decision-

making criteria and the limitations of the model. It also covers few examples of equivalent

and non-equivalent programs in context with the tool. it also shows the usage of the pro-

posed tool with step-by-step details of the user’s interactions with the system, outlining

the pre-requisites for the usage and the criteria for valid and invalid inputs.

Chapter 5 shows the evaluation of the tool and describes the data sets and methodology

used for completing the evaluation of the tool. This also includes the different experi-

ments performed to evaluate the viability and effectiveness of the tool. It also outlines

the results of the experiments, analyses the outcomes and expands on the observations

drawn from the results.

Chapter 6 discusses the possible explanations of the answers to the research questions

and the hypotheses. It concludes the study and covers the future scope of the tool in

detail, providing recommended directions for future research and improvements.
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Chapter 2

Literature review

This chapter of the dissertation provides a thorough background of the problem state-

ment and takes a deep dive into the different state-of-the-art techniques and tools for

determining program equivalence. It also discusses in detail the methodology used in the

backend of FuzzDiff and how it enables the tool to check for equivalence.

2.1 Tools

A wide range of techniques have been introduced in past few years, each providing a dif-

ferent perspective to the problem of program equivalence. It has been widely researched

over the years and has a long history in verification and model checking applications.

One of those verification techniques being discussed in [10] specifically focuses on code

refactoring of sequential programs to their parallel counterpart. It attempts to tackle

the challenge of verifying program parallelization using symbolic execution, taking into

account that the conversion of sequential programs to its parallel counterpart may lead

to synchronization issues. In real-world scenarios, producing error-free parallel code may

lead to changes in behaviour or functionality of the sequential program. Using symbolic

interpretation and mathematical modelling, the two programs i.e sequential and paral-

lel version can be proven functionally equivalent more effectively as compared to testing

based techniques. The model checker uses control flow graph (CFG) built using a sym-

bolic interpreter for C/C++ called ExpliSAT. For each change in the refactoring, it is

verified if the function produces the same output for every input. The result is analyzed

and the outcome is determined based on any violations or interleaving of threads.

Other software verification tools like CPAChecker [14] provides technique to implement
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configurable program analysis (CPA) for model checking.

2.1.1 PatEC

PatEC [17] is another such tool which checks for functional equivalence between serial and

parallelized programs. However, this tool identifies the differences based on parallel design

patterns of OpenMP parallelizations. OpenMP is an application programming interface

which allows shared memory multiprocessing programming in C, C++ and Fortran.

However, in context to the research question, the tools that can be considered state-

of-the-art are the ones which takes into account two programs irrespective of their nature.

Some of these tools are: PEQTest, ARDiff, SymDiff, Hobbit. Each of these tools take

a different approach in determining program equivalence, and hence these form as the

reference point for the design and implementation of FuzzDiff in the dissertation.

2.1.2 PEQTest

PEQTest [19] is again a solution proposed to detect change in functional behaviour of

two programs after code alternation or refactoring. PEQTest is testing based technique

to check for equivalence inspired by the techniques discussed in this section like SymDiff

[22] and PEQCheck [18] which convert the two programs into a test program. It uses

existing test generators for functional equivalence checking but executions are done in

a more efficient manner. The main motive of this tool is to reduce the computation in

testing redundant code of the test program which remains the same in all executions. To

achieve the same, the refactored code segment in the test program is detected and then

specific lines of code is injected into the program which will store, restore and compare

the modified variables in the refactored segment. These segments of code are essentially

checkpoints to preserve the value of variables which would eventually help in determining

the equivalence. If no execution leads to invalid scenario in the comparison of variables,

the two programs are considered equivalent. The evaluation of this tool show that it

outperforms PEQCheck, on which it’s core is mainly based on. The benchmark used for

evaluation were the tasks manually selected from the DataRaceBench [25] suite containing

26 equivalent and 106 in-equivalent tasks.

2.1.3 SymDiff

SymDiff [22] or Symbolic Diff is another state-of-the-art equivalence checker which is

based on symbolic execution of test programs written in C. It complements to tools

6



such as WinDiff and GNUDiff which are based on ”syntatic” differentiation. SymDiff

utilizes an intermediate verification language known as Boogie [13], and hence it requires

programs of any language to be first translated to Boogie. Boogie has its own set of

specifications for control-flow and assignment operations. SymDiff’s user interface takes

two Boogie programs (which must be free of loops) and a configuration file which contains

all the required mapping of procedures, global variables between the two programs. It

then generates new set of Boogie procedures based on the mappings provided by the user

and checks for partial equivalence for all pairs. All these resulting procedures are then

fed into a modular verifier which checks for assertions and returns the combined output.

In case of any assertion failure, SymDiff reports a set of intraprocedural paths to user

to identify the incorrectness in the behaviour of the two programs. With regards to the

proposed tool in this dissertation, SymDiff helps define the assertions required as part of

the verification tasks. However, we go beyond just comparing the final output of the two

procedures.

2.1.4 ARDiff

The creators of ARDiff [12] argue that tools or techniques which use symbolic execution

are cost heavy and not very scalable given the complex nature of real world programs.

Hence, ARDiff aims to improve the scalability of such tools by abstracting the common

code in the two input methods. These segments of common code can occupy majority of

the method body, hence pruning it can help the model checking be more efficient without

impacting its effectiveness. For this refinement, ARDiff iteratively applies a set of three

heuristics to decide whether the two versions of method are equivalent or not. At every

iteration, all the syntactically similar statements are pruned and then symbolic execution

is performed. The first two heuristics narrows down the method to statements relevant in

proving or disproving equivalence, while the third heuristic performs code-level analysis

to remove ambiguity from the code. With this approach, ARDiff reduces the complexity

of the input program and refines the decision-making process.

The creators of ARDiff have also curated a new benchmark [5] for equivalence check-

ing, consisting of real-life examples of refactoring with varying complexity. Since the

examples are Java-based, this benchmarks makes the most ideal choice for evaluation of

the proposed tool in this dissertation. Hence, we use few equivalent and non-equivalent

code samples from this benchmark for evaluation and compare the results with that of

ARDiff.
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2.1.5 Hobbit

Another state-of-the-art verification tool for contextual equivalence checking is Hobbit

[21], which implements bounded model checking to prove equivalences for higher order

programs. These programs are based on a subset of a language called OCaml [1], which

allows object-oriented style of programming in a simplified manner. The bounded model

checker implements ”symbolic environment bisimulations” to explore potentially infinite

computation trees and then finitize them for equivalence check. The dataset [26] on

which Hobbit is evaluated is relevant to this dissertation as the OCaml programs contain

local state which can be verified by testing-based approaches. Hence, for second part

of the evaluation of the proposed tool, we first convert few of these OCaml programs

to equivalent Java classes storing state as global variables, and then use this manually

curated dataset as input programs to the tool. This will also allow us to compare the

effectiveness of the tool with respect to Hobbit.
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Chapter 3

Background

In this section, we first discuss in detail the main engine of FuzzDiff i.e JQF to gain some

background over coverage-guided fuzzing mechanisms and the role it plays in the design

of the tool. We then discuss an important limitation of JQF and how FuzzDiff attempts

to address it.

3.1 JQF

FuzzDiff uses JQF [30] as the engine for generating coverage-guided random inputs of

structured data types and executing the test cases with these inputs.

JQF is an open-source testing platform which allows fuzz testing of java programs more

efficiently as compared to other fuzz testing platforms. JQF is a proven bug finder, discov-

ering 42 unknown bugs in few of the most stable open-sources packages on the internet

including OpenJDK, Apache Commons, Apache Maven Google Closure Compiler and

Mozilla Rhino. Hence, JQF makes an ideal utility for fuzz testing in FuzzDiff.

JQF is built on top of JUnit QuickCheck [4], a library that enables property-based test-

ing in JUnit. JQF uses coverage guidance for generating random inputs for fuzzing.

In FuzzDiff, we use the default guidance mechanism i.e semantic fuzzing using Zest for

coverage-guided fuzzing, but we also discuss other guidances that ship with JQF like AFL

[8], PerfFuzz [24] and RLCheck [33]. This ability of JQF to plugin any custom fuzzing

algorithm and be compatible with other existing guidance mechanisms is what sets it

apart from other fuzz testing platform like Kelinci [20] which only supports AFL fuzzing

algorithms. There are other utilities like Randoop [28] and FuzzChick FuzzChick [23]

which also use coverage guided, property-based testing in their implementation. Hence,
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JQF is also referred to as a modular framework for fuzz testing.

JQF programmatically instruments Java classes representing program under test using

Figure 3.1: JQF Workflow Diagram

the ASM bytecode manipulation framework [3]. This instrumentation enables JQF to

inject code coverage events like the branches covered and invocation of method calls into

the test program. When the test program is executed, these events are emitted and the

information is conveyed to the generator instance. Figure 3.1 shows the end-to-end flow

of how JQF works in phases.

3.1.1 Coverage-guided Fuzzing (CGF)

Coverage-guided fuzzing [31] or CGF is a powerful testing technique for generating inputs

that provide maximum code coverage. It is also referred to as greybox fuzzing technique

[6] because it uses partial knowledge of the test program to determine which parts of the

program are covered by the input fed into it. The fuzzer or the random input generator

monitors the execution of program under test and utilizes this information to make deci-

sions about the next set of inputs.

Figure 3.2 shows the underlying algorithm of coverage-guide fuzzing described in [31].

Initially, a set of random inputs are fed into the program under test and the results of

code coverage are stored with the inputs. Based on this information, the next set of

inputs are mutated by using an algorithm to maximize code coverage. If a random input

10



Figure 3.2: Coverage-guided Fuzzing [31]

leads to a increase in code coverage, it is stored for future reference. If an input causes

a crash, a bug is found. In this way, the inputs keep involving with each test execution

and the newly generated inputs are able to expose uncovered parts of the program. With

this approach, CGF algorithms have successfully found bugs and security vulnerabilities

in many open source libraries effectively.

JQF’s Guidance interface allows researchers to implement their own coverage guidance

mechanism and run JQF using the static method GuidedFuzzing.run().

3.1.2 Usage

In practice, JQF [29] is a Maven plugin or package published on the maven central repos-

itory. This plugin can be injected as a dependency into any maven project, which makes

its easy to use and setup. JQF is also made available as a jar for command line interface

(CLI) usage. For production-ready usage, JQF also provides integration with CI/CD

pipelines on Gitlab. When a pull request is merged into master branch on Gitlab, a suite

of regression tests are executed containing the fuzz targets and bugs are reported if any.

To use JQF [29] in an existing maven project, @RunWith(JQF.class) annotation is used

to annotate the test class using JQF Runner and the test method is annotated with @Fuzz

to declare method as a parameterized test case. Figure 3.3 shows an example of one such

test class TrieTest which has a test method testMap2Trie annotated with @Fuzz, indi-

cating that its parameters will be fuzzed with random values and the test method will be

executed either until the user forces it to stop, a user-specified timeout occurs or until a

11



Figure 3.3: JQF - Coverage-guided Fuzzing using Guidance interface

failure occurs. At every execution, the property is verified on a set of assertions, which

checks if the input value satisfies the condition specified by the user. The output of these

assertions define the next set of inputs.

Figure 3.4: Simple property test using JQF [30]

To run JQF for this test method, the user needs to execute the following maven

command:

mvn j q f : fuzz −Dclass=TrieTest −Dmethod=testMap2Trie

On running this command, it invokes the method repeatedly executes a number of test

execution on the specified test class and test method. JQF by default uses the Zest

algorithm [31] for generating the inputs and it can execute more than 5000 tests in 5
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seconds. During all the executions, JQF provides a status screen on the terminal showing

the statistics in the form of information such as total number of executions, number of

valid inputs, unique failures, total coverage etc. The user can end the execution at any

time and see the final output of the status screen.

Figure 3.5 shows the status screen for Semantic fuzzing of testMap2Trie method de-

Figure 3.5: JQF status screen for testMap2Trie method

scribed in Figure 3.4. By default, Zest algorithm is used for the fuzzing unless explicitly

specified by the user. It can be observed that the report shows one unique failure (or

assestion violation) in the test execution, while only 36.5% of the inputs passed the test.

A failure can be considered as the test scenario which leads to an assertion violation. This

shows how effective Zest algorithm combined with fuzzing is in identifying bugs in the

implementation of Trie in an open source library. It was able to generate and run more

than 16000 inputs on the test method within a period of 30 seconds. The same set of

executions without Zest does not lead to any failure as zest explores a special corner case

which random sampling with no guidance cannot usually find. In the next section, we

will discuss how Zest was able to find the violation.

After the end of execution, JQF also stores the test inputs for unique failures (if any)

in the target/fuzz-results/failures directory. Apart from the failures, JQF also saves the

corpus of successful inputs in the target/fuzz-results/corpus directory. These test cases

can be executed again by running the command:

mvn j q f : repro −Dclass=TrieTest −Dmethod=testMap2Trie

−Dinput=ta rg e t / fuzz−r e s u l t s / f a i l u r e s / id \ 00000
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The output will be a trace log of the AssertionError which contains the input for which

the violation occured and the line number at which the failure occured. This feature

allows the developer to easily fix the bug by executing all the unique failures.

3.1.3 Semantic Fuzzing with Zest

JQF by-default supports the Zest algorithm [31] for guidance in fuzzing, which also be-

comes the default choice for fuzzing in FuzzDiff. Zest is a technique designed specifically

for property testing i.e it combines the power of coverage-guided fuzzing with the property-

based random testing facilitated by JUnit QuickCheck [4]. It uses semantic knowledge

from previous execution to determine the next ideal input candidate for maximum code

coverage.

Zest is a structure-aware algorithm i.e it operates on structured inputs and leverages

the knowledge of input format to generate inputs which are valid syntactically. On the

other hand, tools like AFL or libFuzzer [2] operate on sequence of bytes on compiler level.

Figure 3.6: Zest algorithm [31]

Zest first converts a random input generator like JUnit QuickCheck into a custom pa-

rameteric generator g which acts on parameter sequences rather than seeded inputs. For

the first iteration, theses sequences are random and are updated with each iteration. In

addition to total coverage, Zest also maintains valid coverage which is the set of coverage
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points covered by the valid inputs in g. Once the program is executed on an input, the

result variable stores whether the input is valid or not. If the input leads to a violation

then it is considered invalid. If result is valid and it covers code statements which have

not been covered by previous valid test, then the validCoverage variable is updated and

that input is included in parametric sequence for the subsequent mutation. This loop

continues until the user interrupts the execution and it returns the corpus of successful

inputs g(S) and failure inputs g(F).

In this manner, Zest synthesizes the inputs to converge towards complete code coverage

and guides or biases QuickCheck style generators towards generating structured inputs.

This also means that Zest is dependent on a structured-input generator in contrast to AFL

[8] which performs byte-level mutations on the input string. Hence, Zest’s effectiveness

in coverage-guided fuzzing may vary based on the quality of the generator used.

3.1.4 Binary Fuzzing with AFL

AFL or American Fuzzy Loop [8] is a very popular CGF fuzzing tool for C/C++ pro-

grams. It is best suited for finding syntactic bugs in and has discovered thousands of bugs

and security vulnerabilities in programs that parse binary data, such as image decoders

and media players. The creators of AFL define it as a brute force but rock-solid instru-

mentation approach to coverage-guided fuzzing. AFL integrates its instrumentation with

the target compiler by adding small snippets of code everywhere to help collect coverage

information when the code is eventually executed.

AFL [7] takes the test case specified by the user and puts it into a queue. The bi-

nary program, instrumented with AFL, then takes the test case as an input and then

mutates the data trying to find interesting inputs. The repeated mutation is done using a

wide variety of strategies. In case any of the mutations leads the binary into a new state,

the binary reports back with new coverage information. The information contains which

edges are discovered newly and which input led to it. These inputs are added as new

entry into the queue. This helps the AFL fuzzer to mutate the input to further explore

new edges.

AFL’s mutation technique utilizes different heuristics that are compatible with programs

that parse fixed-size binary files. AFL does not explicitly differentiate between INVALID

and FAILURE results unlike Zest. As a result, JQF’s AFLGuidance proves to be highly

effective when used with test methods that take only InputStream type as argument.
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AFL specializes in fuzzing binary data, and hence integration with JQF means that it is

only applicable for Java programs using streams of bytes instead of structured data types.

3.1.5 Complexity Fuzzing with PerfFuzz

PerfFuzz [24] is a another technique for feedback-directed fuzzing supported by JQF,

which as the name suggest, uses performance feedback to mutate the inputs. PerfFuzz

is essentially an extension of AFL, where its extends the code coverage map to consider

performance counters. If a mutated input either leads to newly explored edges or finds

interesting information related to execution time, it saves the input for further mutation.

Using this strategy, PerfFuzz is able to effectively produce test inputs that maximize

performance counters and discover performance bottlenecks. In terms of implementation

in JQF, PerfFuzz Guidance is defined as a subclass of AFL Guidance, as it inherits the

underlying mechanism for mutation. Post evaluation, PerfFuzz was found to be effective

at generating inputs that exhibit different time or space complexity vulnerabilities.

3.1.6 Reinforcement learning with RLCheck

RLCheck [33] is an AI based approach for generating valid test inputs for property-

based testing of a program. It uses reinforcement learning for guiding generators towards

producing diverse set of sematically valid inputs. The main goal of RLCheck is to produce

large set of valid inputs in very short span of time for effective property testing. To

achieve this, the problem is first formalized into a diversifying guidance problem and then

reinforcement learning algorithm like on-policy Monte Carlo Control is applied to guide

the generator.

3.2 JUnit QuickCheck

JQF leverages the JUnit QuickCheck framework to produce structured inputs. In prac-

tice, JUnit QuickCheck [4] is a library that allows writing and running property-based

JUnit test cases. JUnit QuickCheck is Java implementation of QuickCheck [16] tool orig-

inally designed for property-based testing of Haskell programs.

When we say property-based testing, it means that the test case verifies a property of

the program, after executing the code against a number of randomly generated inputs.

These characteristics or properties of code are verified using a set of JUnit based asser-

tions, which repeatedly checks if the property holds true for the input fed into the test
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program. This provides us some guarantee that upon subjecting the program to wide

range of inputs, the property of the program is preserved. Hence, it will be interesting

to see if this verification technique can be used to instead check for equivalence of two

programs having the same set of input parameters.

JUnit QuickCheck uses the underlying mechanism of the JUnit testing framework to

make property-based testing compatible with Java programs. Typical JUnit test cases

are parameterless i.e the user is expected to mock the input being fed into the test pro-

gram. But with JUnit QuickCheck, the framework allows writing parameterized test cases

where the user can specify the data type of the input which is to be verified in the body.

Such test cases need to be annotated with @Property in order for the framework to iden-

tify a ”Property Test”.

During the execution of the test case, its parameters are subjected to built in gener-

ators which randomly generate values based on the data type of the parameter. The

random input generation, however, does not use any feedback mechanism, and hence are

unlikely to find a corner case even after thousands of executions. The library provides a

collection of generators for most common data types in Java. The test driver can also

be directed to create generator automatically by pointing to constructors or public data

members of class T. In case a generator is not available for a custom type, the user can

provide its own hand-written generator by extending the Generator<T> class. It is an

abstract class which provides abstract method called generate() that can be implemented

to randomly sample a new instance of T.

All Generator instances use SourceOfRandomness object which is an API to generate

random instances of objects in a non-deterministic manner. This SourceOfRandomness

object is subjected to an output stream of bytes by default, however, JQF overrides this

implementation to use the byte stream facilitated by Guidance.getInput() method. In this

way, JQF utilizes the generators to produce feedback-directed semantically valid inputs.

It can be also said that using JQF with No Guidance is equivalent to using plain JUnit

QuickCheck.

QuickCheck also provides a range of Java annotations liek @InRange, @Size, @NotAl-

lowed etc. to restrict or control the size of input being generated. This proves useful

especially for recursive functions where large inputs may lead to long running programs

defeating the purpose of ”Quick check”. The mechanism of controlling inputs is carried

over from QuickCheck for Haskell discussed in the next section.
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3.2.1 QuickCheck for Haskell

As discussed in the previous section, JUnit QuickCheck is inspired by the QuickCheck tool

for Haskell programs [16]. QuickCheck was a tool originally designed to help Haskell pro-

grammers perform property testing of Haskell programs. Haskell is a high-level statically

typed functional programming language based on mathematical functions. Functional

programs are well suited for automated random testing, and hence QuickCheck intends

to provide a mechanism to test these functions in a shorter period of time. In QuickCheck,

the Haskell programmer is required to provide a specification of the program, which are

the properties that must be satisfied by the functions. QuickCheck then randomly gen-

erates large number of inputs and checks if the properties hold true for each input. The

specification can be conveyed using set of combinators provided by QuickCheck, which

can also be used to notice the distribution of test data.

Random testing proves to be most effective in cases where wide distribution of test data is

required. Hence, QuickCheck facilitates test data generators for common types in Haskell,

and gives the control to the user to decide how uniform the distribution of data must be.

It also provides a novel way of controlling or restricting the size of input especially for

recursive functions.

QuickCheck, when used for testing programs on real Haskell systems showed that it can

prove to be a very lightweight tool for automatic testing which is otherwise very costly

on Haskell systems. For smaller Haskell programs, it is very likely that the random in-

puts will cover all branches of the programs exhaustively and hence fine grain testing also

becomes the ideal approach for testing large Haskell programs.

3.3 Limitations

In the previous section, we discussed how effective JQF combined with Zest is in verifying

properties of a program using fuzz testing. Incorporating a coverage-guidance mechanism

improves the ability of test generators to produce semantically valid inputs, helping ex-

plore every corner of program under test. The verification task becomes more optimal

with use of feedback-directed fuzzing.

Being an extension of QuickCheck, JQF comes bundled with a collection of generators

for most common datatypes and collection interfaces in Java. It also provides generators

for concurrent implementations and functional interfaces like lambda expressions. Table
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3.1 shows few examples of JUnit QuickCheck generators for most commonly used types

in Java.

Category Generators
java.lang StringGenerator

IntegerGenerator
LongGenerator
DoubleGenerator

CharacterGenerator
BooleanGenerator
ByteGenerator

java.math BigDecimalGenerator
BigIntegerGenerator

java.time ClockGenerator
LocalDateTimeGenerator

YearGenerator
ZonedDateTimeGenerator

MonthDayGenerator
InstantGenerator

java.util.concurrent CallableGenerator
java.util.function FunctionGenerator

PredicateGenerator
SupplierGenerator

BinaryOperatorGenerator
IntFunctionGenerator
LongFunctionGenerator

java.util ArrayListGenerator
HashMapGenerator
HashSetGenerator
HashtableGenerator
LinkedListGenerator

SetGenerator
StackGenerator

Table 3.1: Examples of Inbuilt Generators provided by JUnit QuickCheck [4]

Based on the type of parameter, JQF automatically picks up the corresponding Gen-

erator from the library and sets it for fuzzing random inputs of that type. While the list

covers most commonly used types and data structures, JUnit QuickCheck still cannot

fuzz custom objects containing properties of simple data types. In most programming

scenarios, whole Java objects are passed as parameters into methods rather than indi-

vidual attributes. This is mainly to achieve abstraction between two java classes. For

instance, suppose a programmer wants to write a method that checks if a person’s age is

19



above 18 and the Person object contains a number of attributes including age. Following

the design principles of object oriented programming, the programmer is more likely to

define a method with Person object as a parameter rather than an integer variable storing

the age. This ensures that Person’s age is encapsulated in an object and instructions in

method can then call getter method to get the age of the person.

Generating random instances of such custom objects is not possible using JUnit QuickCheck

and hence it becomes a limitation in its usage for fuzz testing. To address this shortcom-

ing, We propose the design and implementation of a Generic generator which supports

the fuzzing of a simple custom Java object created by the user. The usage of the Generic

generator remains the same as the other readily available generators, but the user needs

to decide which generator supports their requirements best.

3.4 Generic Generator

The Generic Generator aims to provide a fuzzy generator that can create random instances

of custom objects. The design of Generic Generator follows the underlying mechanism

of a Generator<T> instance, but instead of specifying the type T of Generator while

extending its abstract class, we use the parent Object class. This makes the Generator

compatible with all classes as in Java, by default all custom classes extend the Object

class. The design heavily relies on the use of Generics and Java reflection API to avoid

any manual changes in the implementation.

Moreover, the Generic Generator has been designed to provide flexibility to the user

in terms of controlling the size of inputs for specific data types. The user can specify

maximum and minimum value of the Integer types, the default for which is Integer.MAX

and Integer.MIN. The user can set the number of iterations for array types, for which

default value is set to 10. And lastly, the user can specify the length of the string to

be generated, with 5 set as the default length. The user can specify these requirements

through parameters in the command line interface, which is explained in detail in Usage

Section.

Working

Similar to implementation of handwritten Generators, we define a Generic Generator

class which extends Generator<T> abstract class. This class implements the abstract

method generate(). The constructor of the class takes inputs as a Class<Object> and
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sets its value to a global variable cls of type Class <Object>. This sets the class of

the input parameter being fuzzed. Next, in the generate() method, we first check if the

class is primitive, wrapper or array using inbuilt methods in java.lang and then use Java

reflection API to create an instance of this class. The user may have to make changes

in the code where declared constructor of the class has been determined using reflection.

Once the correct constructor is identified, the class is then instantiated with specified

arguments (incase of all argument constructor) or no arguments (incase of no argument

constructor). Next, all the declared fields in the class are determined using reflection.

Then, using a for loop, we iterate through each field, get its type, generate random value

for that type and finally set the random value in the field. In this manner, we ultimately

get a random instance of the custom class object, which is returned back to the test driver.

The other private methods in the class provide utility for generating random values using

SourceOfRandomness instance, taking into consideration user specified restrictions.

Limitations

The Generic Generator has its own limitatons in terms of the data types that can used

in custom objects. In its first version, it only supports types which are primitive, wrap-

per class or Array instances of primitive and wrapper classes. Attempts were made to

support Collection data structures like ArrayList, HashSet, LinkedList etc. but since the

type of collection object is determined at runtime in JVM, the Generic Generator fails to

generate random instances using SourceofRandomness. However, the user can always use

the inbuilt CollectionGenerator for fuzzing Java Collection objects.

Moreover, the Generic Generator is not entirely generic as it may require code modi-

fication if the the class to be fuzzed contains an All Argument Constructor, which makes

it impossible to instantiate the class using java reflection as there is no way of guessing

the number and type of arguments in the constructor. This becomes a major limitation

of the Generic Generator and remains one of the points to be addressed in the future

versions.

21



Chapter 4

FuzzDiff

In this section, based on the design choices, we define the functional requirements of

FuzzDiff. We then describe the architecture of FuzzDiff and the various components

involved in the design. And finally, we describe the testing-based approach utilized in

FuzzDiff and then review the implementation in detail.

4.1 Functional Requirements

FuzzDiff aims to solve program equivalence using the powerful utility that JQF [30] pro-

vides for coverage-guided fuzzing. All the features of JQF discussed in previous sections

contribute towards devising a novel approach of checking two programs for equivalence.

Focusing on this objective, we introduce a tool that performs program verification after

code refactoring keeping JQF at the core of it. It is however important to define the scope

of the tool by defining the requirements.

These evaluated requirements of the equivalence tool are:

1. The input to the tool is a pair of two java programs (original and refactored) con-

taining the two public methods to be tested for equivalence. The name and the

signature of the methods must be same. The tool should be able to take the three

inputs i.e Original class, refactored class and method name from the user through

command line interface. The input classes may contain global state in form of glob-

ally declared variables. Though generally global data members are private and are

accessed via public getters and setters to achieve abstraction, for this tool, it is

assumed that the data members are accessible from any class.

2. The tool should compare the output of the two methods along with the global state

of the two classes.
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3. The tool must compare the state of the input before and after the execution of the

program. In case of multiple parameters, iteratively compare the state of all inputs.

4. If the methods return type is void, then compare only the global state of the two

classes.

5. If the methods have no parameters, compare only the final output and state of the

program as fuzzing is not possible for that method.

6. The tool should also semantically compare the calling behaviour of the two methods.

7. If the two methods make method invocations to other classes, provide an interface

for the user to provide those dependent classes.

8. The tool should support a number of options to control the fuzzing mechanism. It

should also allow user to provide its own custom generator and use it for fuzzing.

9. As an output, the tool must provide user with the result of the verification task i.e

if the two programs are equivalent or not. If they are not equivalent, then notify

user which input led to in-equivalency and which line of the program resulted in it.

Success Criteria for Equivalence

Before considering design choices for implementation, it is important to define the criteria

for equivalence and non-equivalence. The two input programs can be considered equivalent

if -

1. The state of input(s) remains same before and after execution in terms of the value

they hold.

2. The output of both the methods after execution is equal by value.

3. The global state i.e the value of all global data members is equal after execution.

4. The calling behaviour of the two methods is similar i.e the number of method

invocations and the order in which invocations are made is equal.

4.1.1 Example of equivalent and non-equivalent programs

Consider two programs Program1 and Program2 returning the maximum element in an

integer array. These two programs shown in Figure 4.1 and 4.2 are to be checked for

equivalence using FuzzDiff. The original class Program1 uses iterative approach to com-

pute the largest element, while the refactored class Program2 first sorts the array and
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Figure 4.1: Program1.java Figure 4.2: Program2.java

returns the last element of the sorted array. Both are different approaches to solving the

same problem and can be considered as a real world example of refactoring.

The two programs, as per the criteria defined above, are inequivalent because the state

of input, which is the integer array in this example, is not same at the end of execution

of both the programs. The Array.sort() method in Program2 sorts the input array, while

Program1 uses local variables to determine largest element without affecting the state

of the input array. Hence, despite the final output of the two method being equal, the

inequality of input state after execution makes the two programs contextually inequivalent.

Now consider another program Program3 shown in Figure 4.4, which similar to Program1

and Program2, computes the largest element in an Integer array but uses a different ap-

proach which largely resembles to that of Program1 (Figure 4.3). It first stores all the

elements of the array in an ArrayList and then returns the maximum element in the List

using Collections.max() method. This approach can be considered as a minor refactoring

of Program1 as the algorithm is mostly similar. As per the success criteria defined in

previous section, the two programs, based on verification, prove to be equivalent as the

final output of the two programs and the input state after execution, both are equal.

For demonstration purposes, lets assume both programs store the largest element in a

global variable max num, initially set to Integer.MIN VALUE. The two methods also

make invocations to two methods testMethod1() and testMethod2() with the intention

to only verify the number of method invocations and the order of those invocations. As
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Figure 4.3: Modified Program1.java Figure 4.4: Program3.java

per the equivalence criteria, based on structural analysis, these two programs prove to

be inequivalent as the order of method invocations to methods testMethod1() and test-

Method2() is not the same.

4.2 Design and Implementation

Considering all the functional requirements and the equivalence criteria, we make design

choices for the tool and devise a novel approach to perform equivalence checking using

fuzz testing.

4.2.1 Architecture

Figure 4.5 shows the proposed System Architecture for FuzzDiff. The two programs (orig-

inal and refactored) are taken as input from the command line interface and fed into the

fuzz checker. The underlying working of fuzzer has already been discussed in Chapter

3. We use the JQF [29] framework for coverage-guided fuzz testing using Zest guidance

algorithm and incorporate it with a set of verification tasks defined by JUnit assertions.

These set of assertions check for equivalence based on criteria defined in Section 4.1. These

verification tasks occur sequentially and in sync with JQF fuzzer. The Fuzz Checker by

default uses the Generic Generator for fuzzing but the user can provide its own handwrit-

ten generator as input. We use Java reflection API to automatically get declared method

of programs under test, invoke them and perform other class-level comparisons.
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Figure 4.5: FuzzDiff - System Architecture

The JQF-based Fuzz Checker then uses the reproduced coverage file to perform semantic

check by analysing the coverage file and parsing it to fetch necessary information regard-

ing method invocations. The final output is then computed after all checks are computed

and presented to the user.

4.2.2 Implementation

FuzzDiff is made available as a Maven-based tool. Apache Maven is a build automation

and project management tool made primarily to support the packaging Java programs.

This implementation choice limits its usage but as JQf is Maven-based utility, it makes

sense to build FuzzDiff as Maven project. It provides many complementary plugins that

assist in building large scale Java-based applications. The Maven project contains a

pom.xml file where we can version the tool and inject dependencies published on maven’s

central repository. One of these dependencies is jqf-fuzz, which gives us access to all

the features of JQF including the annotations and interfaces. JQF internally uses JUnit

QuickCheck as a maven dependency. We also define three custom system property vari-

ables namely original, refactored and methodName in maven-surefire-plugin in pom.xml.

This configuration allows all the classes in the application to recognize the input classes
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and method under test.

The Maven project is structured in the following manner to satisfy the functional re-

quirements of the tool:

• The ”classes” package in src/main stores all the input programs and its dependent

classes. This is the location where the user is supposed to place the input classes,

change its package name and resolve imports if any.

• The ”generators” package in src/main stores all the custom generators provided

by the user, which may be required for fuzzing custom objects. It also houses the

Generic Generator proposed as part of this tool.

• The main class ”EquivalenceChecker” contains the main method which serves as

the entry point of the application.

• The test directory contains the two test classes and ProgramEquivalenceTest and

AdditionalChecksTest responsible for performing the equivalence check. The former

corresponds to the fuzz checker component in the architecture, while the latter

corresponds to the semantic checker component. These two classes contains the

JUnit test cases which can be directly executed from the command line or can be

run in IDE itself by the developer.

• The project also contains the run.sh script which provides the interface for running

the tool.

Class diagram

Figure 4.6 shows the UML class diagram, notating all the classes in FuzzDiff. It describes

the structure of the system by showing the system’s classes, their attributes, methods and

the relationship between classes.

The user first provides FuzzDiff with the two input programs i.e the original and refac-

tored class containing same state variables and methods with same name and signature.

These two classes are placed in the classes directory along with its dependent classes if

any. In case the user wants to provide a custom generator for the two input classes, it

is placed in the generators directory. Based on the type of declared constructor of the

two classes, the user makes changes to the Generic Generator class so that the classes

can be instantiated using reflection. If the constructor contains arguments, then the user
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also needs to make few changes in the fuzzTestForEquivalence() method to support the

instantiation of the two classes.

Figure 4.6: FuzzDiff - UML Class Diagram

Next, the user runs the shell script where the two class names and the method name

to be fuzzed are provided as input by the user. The script executes the main method in

EquivalenceChecker class by running the following maven command:

mvn exec : java −Dexec . args=” $ o r i g i n a l $ r e f a c t o r ed $method name”

where $original, $refactored and $method name are the three inputs form the user.

The main method first validates the three arguments by checking if the number of argu-

ments are 3 and if they are not null. If not null, the String inputs are then converted

to Class<?> objects and then all the declared methods in those classes are fetched and

stored in two arrays. If none of those declared method names match the input method

name, an exception is thrown saying ”METHOD NOT FOUND”. If a match is found, the

parameter count of that method is determined using reflection. If the parameter is zero,

it means that the method requires no fuzzing and it only subjected to verification tasks

defined explicitly in fuzzTestForEquivalenceWithNoArgs() test method in ProgramEquiv-

alenceTest class. If the parameters exist for the method, then it qualifies for fuzz testing
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carried out by test method fuzzTestForEquivalence() in ProgramEquivalenceTest class.

In order to execute the above test methods directly from the main class, a different

process is started within the same thread. A Runtime object is initialized which exe-

cutes the following maven command onthata seperate process using the Runtime.exec()

method:

mvn . cmd j q f : fuzz −Dclass=ProgramEquivalenceTest

−Dmethod=fuzzTestForEquiva lence

−Dtime=10s

−Dor i g ina l=\$ o r i g i n a l
−Dre factored=\$ r e f a c t o r ed
−DmethodName=\$methodToBeFuzzed

The argument options -Doriginal, -Drefactored and -DmethodName have been de-

fined as system property variables in pom.xml. This allows us to transfer information

from EquivalenceChecker class in main directory to ProgramEquivalenceTest class in test

directory, which is not otherwise possible through normal object passing. The fuzz time

has been set to 10 seconds, which means the fuzzing will automatically stop after 10 sec-

onds. Before the process is started, the setOtherConfigurationMethod() sets the custom

properties the user may provide to control the size of inputs.

Once the command is executed, control goes to ProgramEquivalenceTest class, where

one of the two test methods is ran. However, before the tests are ran, we define a setup()

method annotated with @BeforeClass, which picks up the three inputs set in the system

property variables and initialize them on a global level. This annotation instructs the test

class to execute the setup method before any test method could be executed.

The two test methods fuzzTestForEquivalence() and fuzzTestForEquivalenceWithNoArgs()

serves the logic for the proposed novel approach of program equivalence. The former

method is a typical JQF parameterized test driver annotated with @Fuzz, which instructs

the test class to perform fuzzing on the parameters of the test method. Since the param-

eters of the input method cannot be dynamically determined beforehand, it requires the

user to manually add the type and variable name of the parameters in the brackets along

with the type of generator being used for those parameters (By default it will be inbuilt

JUnit QuickCheck generators). On making these changes, the equivalence checker is now

ready to be executed. Once it is executed by the mvn:jqf command, it first instantiates

the the original and refactored class.
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To verify if the state of input(s) remain same before and after execution, we first cre-

ate a clone of the parameter objects. Then, we create a Method object based on the

method name and the type of parameter (s) (as method overloading is a possibility).

Using java reflection, we then invoke the original method by passing the clone object as

parameter and store the final output of the invocation in Object x. We repeat the same

for refactored method and store the output in Object y. Using simple JUnit assertions,

the two clone objects are checked for equality. In case of multiple parameters, user is

required to add more assert statements to check for equivalence.

Once the input state is verified, we then compare the output x and y using assertE-

quals() method. However, we only do this verification if the return type of the methods

are not void.

The final fuzz test is verifying if the global state of the two objects is equal or not

after the execution. To perform the verification, we first check if the classes even have a

global state. No declared fields in the two classes indicate that this step is not required.

Presence of any declared public fields indicates that they must be checked for equivalence.

Initially, we check if both the class have same number of declared fields using assertE-

quals() method. This remains one of the conditions to be satisfied by the classes; that

both must have same number of globally declared fields. If they are same, we store the

values of those fields in two ArrayLists (one for each object) and then finally check if both

the lists are equal using assertEquals() method. This step concludes the fuzz testing of

the two methods as per the criteria defined for equivalence in Section 4.1.

The fuzzTestForEquivalenceWithNoArgs() method performs the same operations but only

checks for final output and global state once. As there no parameters are specified for

the target method, no repeated execution is required for fuzzing. Hence, it is annotated

with @Test to instruct the test class to execute it only once. All the testing takes place in

background and the user is abstracted from the commands being executed in background.

The next step after fuzz checking, as per the proposed architecture, is semantic checking

implemented in AdditionalChecksTest class. After the fuzz testing is over, JQF stores

the test inputs that passed all checks and/or led to failures if any. If the fuzz testing led

to no assertion errors, it means that the two classes are equivalent till now and no test

inputs will be stored in the fuzz-results/failures directory. This is what we check in the

first verification task of semantic checking. If there are any failures in that directory, skip
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the semantic checking and inform user about the inequivalency of the two programs. Oth-

erwise, we perform few more tests that check the calling behaviour of the two methods.

If no failures are detected in the first step, the shell script reproduces the corpus results

stored in fuzz-results directory to generate the coverage file provided by JQF. This is an

optional feature of JQF and can be enabled by using the option -DlogCoverage in the

jqf:repro command. This coverage file contains the trace log for method execution from

the first line of the test class to the last line of the class being tested. The information

in this file allows us to see the method invocations made during execution for each of

the two methods. Figure 4.7 shows a sample coverage.txt file generated after reproducing

fuzz results for Program1 and Program3 described in Section 4.1.1.

Figure 4.7: Sample Coverage file for Program1 and Program3

The testCallingBehaviour() method fetches this coverage file and stores the content

in a BufferedReader. Using regex expressions, it then scans through the file to search for

instances where method invocations have happened. For example, in the sample coverage

file, line 2,3 and 6,7 show external calls to another class from the largest() method using

arrows (–>). We store all such lines in an array, split the line based on ”–>” string and

store that string in a list. The list is splitted into two halves for comparison. The calling

behaviour of the two methods is then tested by two assertions which first checks if the two

methods have equal number of invocations. If yes, then the second checks if the order of

those invocations is equal or not. Though the semantic check only comprises of two veri-

fication tasks, further improvements can be made to check for higher degree of equivalency.

After executing this test case, If all the checks pass, then the two Java classes are con-

sidered equivalent. Any failure in either of the two verification steps causes the tool to
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return the opposite result. Moreover, by leveraging the features of JUnit framework, we

can show the user the inputs which led to failure and at what line the bug needs to be

fixed after refactoring. This novel approach of checking equivalence using fuzz testing

and semantic analysis is made available as an open-source tool and can be found at the

following Github repository: www.github.com/akashpatil7/FuzzDiff

4.2.3 Limitations

In this section, we discuss the limitations of FuzzDiff and the constraints it imposes to its

real-world user. This tool is mainly targeted to developers who perform code refactoring

tasks and which to check if the functional behaviour is intact after the changes have been

made. Any bugs found can then be resolved quickly. FuzzDiff aims to explore the idea of

solving program equivalence using feedback-directed fuzz testing and its implementation

is a mere attempt to achieving the research goal.

With the development of its first version, FuzzDiff comes with a host of drawbacks and

limitations that may impact the overall user-experience of using the tool. However, we

expect the next versions to solve major bugs and limitations in usage. Firstly, it only

supports simple Java programs with minimal complexity and computations. The two

inputs classes are expected to have a public method with same signature and same return

type. This restricts the utility to only certain type of java programs. But in reality, Java

programs can contain complex algorithms and can have dependency on many different

classes. FuzzDiff expects the use of same variable names for global state comparison,

which in real-world should not be the case for two functionally equivalent programs. In

any refactoring task, the functionality can remain the same even after a complete overhaul

of the class. This fact is ignored by FuzzDiff and due its heavy reliance on Java reflection

API, it makes certain compromises in providing a flexible equivalence checker tool to the

user. FuzzDiff may not as flexible as other readily available equivalence checkers but its

compatibility with Java, which is one of the most sought-out programming in the world,

makes it a great value proposition.

Secondly, in certain use cases, FuzzDiff requires the programmer to make changes in

the code for meeting the requirements of the tool. These manual changes are mainly

caused due to inability of automatically identifying the declared constructor of the class

and instantiating the class.

Thirdly, the assertions defined as part of the verification tasks are not very exhaustive,
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and address the formal definition of functional equivalence. The semantic checker only

perform two checks and does not completely check for semantic equivalence. This con-

straint is mainly due to the lack of detailed trace available after the test execution.

Lastly, in terms of its usage, FuzzDiff requires user to manually place the input classes

in a certain directory and provide all the other necessary files and generators required to

execute the program under test. This can be very time-consuming and tedious task for

the user, whose preference otherwise would be to import the utility as a package in their

own project, hence eliminating the need to transfer files from one directory to another.

Despite its limitations and shortcomings, FuzzDiff is still is in prototype phase and re-

mains a work under progress. The research goal of this tool was ultimately to check if the

proposed methodology is implementable in real world and if yes, how effective would it

be. With several patches and alternations in implementation, FuzzDiff could prove to be

a very effective equivalence checker for Java or any JVM based programming language.

4.3 Usage

In this section, we show the usage of FuzzDiff and the system requirements for its utiliza-

tion. The pre-requisites of the tool are listed down and a step by step procedure is shown

in the form of a user flow diagram, guiding the user in using the tool to its full potential.

The code has been commented with TODOs which assist user amking decisions tha suit

the requirements better.

FuzzDiff is an open source maven project available on Github. To start with, the user first

needs to clone the repository locally and install all the maven dependencies by running

the following command in the cloned directory:

mvn c l ean i n s t a l l −DskipTests

After executing the command, all the required packages and plugins (including JQF) are

downloaded in the local repository. The project is now setup locally. Next, the user needs

to open the project in an IDE or any editor where changes can be easily made to the code.

Fig 4.8 illustrates step-by-step procedure from there onwards with the help of a user flow

diagram.
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Figure 4.8: User Flow Diagram of FuzzDiff

4.3.1 Pre-requisites

In terms of pre-requisites for using the tool, it will useful for the user to understand the

role and usage of JQF [29] and JUnit QuickCheck [4] in FuzzDiff. It will allow the user to

troubleshoot and fix any JQF specific error quickly. With respect to the minimum system

requirements, following installations are required to use the tool locally or on any server:

- Maven
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- JDK 9+

- IDE or text editor

- Terminal or Command Prompt

4.3.2 Shell Script

FuzzDiff provides an user interface in the form of a simple shell script called run.sh, which

when executed asks the user to provide three inputs: Original class name, Refactored

class name and the name of the method to be tested. On entering these inputs, FuzzDiff

executes different maven commands in background to perform operations in order to check

for equivalence. The shell script can found in its raw form in the Appendix to understand

how it orchestrates the test execution.

4.4 Chapter Summary

To summarize the chapter, we present a novel approach to equivalence checking in the form

of an open source utility called FuzzDiff. Based on the functional requirements and criteria

of equivalence, we design a tool that attempts to address the research question which is

Can property-based testing techniques involving random sampling or fuzzing be used to

identify program equivalence of two methods. Based on the proposed implementation of

FuzzDiff, the answer to this question is perspicuously yes. The prototype design satisfies

all the functional requirements of the tool, and proves the equivalence or in-equivalence

of two Java programs. Hence, it can be considered as a viable solution to the problem

statement. The design and implementation of FuzzDiff comes with its set of flaws and

limitations, however, these shortcomings can be addressed in the next versions of the

product. In the next chapter, we look to answer the second research question which is

determining the level to which it will be effective in real-world scenarios.
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Chapter 5

Evaluation

In this section, we attempt to answer the final research question of this study i.e to what

level is the FuzzDiff effective on real-world programs. The effectiveness of an equivalence

checker can constructively be measured by its accuracy to judge the correct output of

existing labelled dataset of java programs. Other way would be to exhaustively test the

tool on open source softwares and observe if it can identify existing bugs in the programs.

The latter approach was used by creators of JQF to evaluate the tool and it was successful

in discovering 42 bugs in widely used open source softwares like OpenJDK, Apache Maven,

Apache Commons etc. However, for FuzzDiff, we use the former approach for evaluation

mainly because it is still in the prototype phase and comes with certain limitations in its

usage.

5.1 Methodology

In this section, we describe the methodology used for evaluating the effectiveness of the

tool on real-world Java programs.

5.1.1 ARDiff Benchmark

We first test the tool on the benchmarks created by the creators of ARDiff, which was

eventually used for the evaluation of ARDiff. The dataset [5] contains 12 benchmarks,

each containing multiple examples of original and refactored Java programs. Each exam-

ple contains two pair of programs, one pair is labelled equivalent and other pair is labelled

as in-equivalent. Both original and refactored program contains one public method with

same signature and return type, and perform a set of operations on the input to give an

output. Most programs also serve as quality test data for testing the effectiveness of the

semantic checker as they contain invocations to other private methods in the same class.
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On the flip side, none of the programs maintain a global state and store data only in local

variables.

Nevertheless, the dataset still remains an ideal choice for evaluation of FuzzDiff as it

provides real-life examples of refactoring and they can cover majority of the verification

tasks defined in the fuzz testing. Moreover, the results can eventually be compared to

that of ARDiff.

For each of the 73 examples of original and refactored pair of programs, we first identify

the class names and method name to be given as input to FuzzDiff. Next, we makes

changes to the test driver based on the type and number of method parameters. Finally,

we execute the run.sh script providing the required inputs and then storing the output of

the execution in a table. This experiment is carried out for all the 73 examples. During

the experiment, the use of Generic Generator was not required as the input type for all

programs was either primitive or wrapper class. Table 5.1 and Table 5.2 encapsulates the

result of the simulations described above.

Result

It can be inferred from the table that out of 73 equivalent programs, 69 programs (95%)

were rightly classified as equivalent, while 100% of the programs were rightly detected as

in-equivalent. As per the definition of equivalency followed by FuzzDiff, the 4 equivalent

programs which were identified as in-equivalent by FuzzDiff were found to be wrongly

classified as equivalent. Out of those four programs, method ”bessy1” was found to be

inequivalent because the final output was not same during fuzz testing. A difference was

found in the output value returned by the two programs in terms of the double precision

accounted by the number of decimal places. The decimal precision of the double value

returned by the original program was found to be one less than that of the refactored

program. This can prove to be a bug if the refactored method is used for comparison in

production systems. The other 3 methods namely ”gser”, ”gamnnln” and ”ran(0)” were

evaluated by FuzzDiff as in-equivalent because the input state after execution was found

to be unequal for the original and refactored program. It could be the case that these

three programs were wrongly classified because ARDiff [12] followed a different definition

of equivalency.
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Benchmark Method Output Reason (if In-
equivalent)

ModDiff Const Equivalent NA
Add Equivalent NA
Sub Equivalent NA
Comp Equivalent NA
LoopSub Equivalent NA
UnchLoop Equivalent NA
LoopMul2 Equivalent NA
LoopMul5 Equivalent NA
LoopMul10 Equivalent NA
LoopMul15 Equivalent NA
LoopMul20 Equivalent NA
LoopUnrch2 Equivalent NA
LoopUnrch5 Equivalent NA
LoopUnrch10 Equivalent NA
LoopUnrch15 Equivalent NA
LoopUnrch20 Equivalent NA

Airy max Equivalent NA
sign Equivalent NA

Bess bessi Equivalent NA
bessi0 Equivalent NA
bessi1 Equivalent NA
bessj Equivalent NA
bessj0 Equivalent NA
bessj1 Equivalent NA
bessk Equivalent NA
bessk0 Equivalent NA
bessk1 Equivalent NA
bessy Equivalent NA
bessy0 Equivalent NA
bessy1 Inequivalent Final output is not

same (difference in dec-
imal points)

dawson Equivalent NA
probks Equivalent NA
pythag Equivalent NA
sign Equivalent NA
sqr Equivalent NA

Caldat badluk Equivalent NA
julday Equivalent NA

dart test Equivalent NA

Table 5.1: Results of experiment on different benchmarks used by ARDiff
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Benchmark Method Output Reason (if In-
equivalent)

Ell zbrent Equivalent NA
brent Equivalent NA
dbrent Equivalent NA
rj Equivalent NA
rf Equivalent NA
rd Equivalent NA
rc Equivalent NA
plgndr Equivalent NA
ell Equivalent NA
ellpi Equivalent NA

Gam betacf Equivalent NA
betai Equivalent NA
ei Equivalent NA
erfcc Equivalent NA
expint Equivalent NA
gammp Equivalent NA
gammq Equivalent NA
gcf Equivalent NA
gser Inequivalent The state of input is

unequal after execution
and order of method
calls is not same

power test Equivalent NA
Ran bnldev Equivalent NA

ran(1) Equivalent NA
gasdev Equivalent NA
poidev Equivalent NA
gammln Inequivalent The state of input is

unequal after execution
expdev Equivalent NA
ran(0) Inequivalent The state of input is

unequal after execution
gamdev Equivalent NA

sine mysine Equivalent NA
tcas altseptest Equivalent NA

NonCrossingBiased
Climb

Equivalent NA

NonCrossingBiased
Descend

Equivalent NA

tsafe conflict Equivalent NA
snippet Equivalent NA
normAngle Equivalent NA

Table 5.2: Experiment on different benchmarks used by ARDiff
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5.1.2 Hobbit test programs

As part of our second set of experiments, we evaluate FuzzDiff on a test-suite of 12 equiv-

alent and 5 in-equivalent pair of programs originally used by an equivalence checker called

Hobbit [21] for its evaluation. The dataset is readily available on Github [26] and proves

to be an ideal choice for the evaluation of FuzzDiff because of the wide variety of programs

it comprises of. Majority of programs maintain a global state, which allows us to test

almost every verification task in FuzzDiff. However, one constraint of using using this

dataset is that the programs are written in OCaml, which is a statically typed functional

programming language with substantially different verbose compared to Java. Each test

program is a .bils file that represents a pair of original and refactored program separated

by ”|||” string. Since the programs were written in OCaml and FuzzDiff only supports

Java, a fraction of the 108 equivalent and 68 inequivalent programs were manually trans-

lated to their Java counterparts.

The manual translation of the programs from OCaml to Java was done with reference

to the official documentation provided by the OCaml Platform [1]. The dataset contains

programs of varying complexity, however, for evaluation, we only consider simple OCaml

programs that can be easily translated to Java. After translation, we follow similar pro-

cess of evaluation as done on the ARDiff dataset. Few of the programs contained recursive

operations on integers, as a result of which the input size was restricted from -10 to 10 or

0 to 10. This allowed us to utilize the custom options feature of FuzzDiff. The result of

the experiments on the 12 equivalent and 5 in-equivalent pair of programs are presented

in Table 5.3 and Table 5.4 respectively.

Result

It can be deduced from the two tables that only 1 out of the 12 equivalent programs was

correctly classified as equivalent by FuzzDiff. The other 11 were found to be in-equivalent

due to a variety of reasons including inequality in number of method invocations, dissimi-

larity in global state and inequity of final output after execution. On the contrary, all the

5 in-equivalent programs were correctly identified as in-equivalent, with majority of the

executions failing due to inequity of final output. The positive inference from this experi-

ment is that FuzzDiff was able to test all possible verification tasks and was subjected to

all assertion failures. The negative inference is in fact the inaccuracy in the identifying

equivalence. But the lack of correctness could possibly be justified by the assumptions

made during translation from OCaml to Java.
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Original Pro-
gram

Refactored
Program

Output Reason (if In-equivalent)

Arrays Arrays1 Inequivalent Number of method invocations
are not equal

Mult Mult1 Inequivalent Number of method invocations
are not equal

Cell1 Cell11 Inequivalent Number of global fields are not
same

Cell11 Cell21 Inequivalent Final output is not equal
Cell11 Cell41 Inequivalent Global state is not same
Counter Counter1 Inequivalent Global state is not same
CounterV2 CounterV21 Inequivalent Global state is not same
Mccarthy Mccarthy1 Inequivalent Number of method invocations

are not equal
RecurFact RecurFact1 Inequivalent Final Output is not equal
Swap Swap1 Inequivalent The state of input is unequal

after execution
TakeuchiKnuth TakeuchiKnuth1 Inequivalent Final Output is not equal for

inputs b/w -100 and 100
Trivial Trivial1 Equivalent

Table 5.3: Results of experiment on equivalent programs used by Hobbit

Original Program Refactored Pro-
gram

Output Reason (if In-
equivalent)

ReveAckermannIneq ReveAckermannIneq1 Inequivalent Final output is not
equal for inputs b/w 0
to 10

ReveAddHornIneq ReveAddHornIneq1 Inequivalent Final output is not
equal for inputs b/w -
10 to 10

ReveInliningIneq ReveInliningIneq1 Inequivalent Final output is not
equal for inputs b/w -
10 to 10

Cell11 Cell21 Inequivalent Global state is not
same after execution

Cell11 Cell41 Inequivalent Final output is not not
equal

Table 5.4: Results of experiment on in-equivalent programs used by Hobbit
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5.2 Discussion

The experiments performed on the two datasets show that FuzzDiff, as an utility, can

be conveniently used to test equivalaence for any given pair of program. FuzzDiff’s easy

usage and setup makes it favourable for any programmer to readily use it in day-to-day

refactoring tasks. In terms of its effectiveness as an equivalence checker, it is still subjec-

tive to the type and complexity of programs. It proved to be very accurate in identifying

equivalency in ARDiff benchmarks [5] but performed equally poor on the Hobbit test

programs [26]. The two datasets were chosen because of their compatibility with the

requirements of the tool. Program equivalence checkers follows varying set of rules and

principles of equivalency, which makes it further difficult to curate a universal dataset

that would meet the requirement of newly born equivalence checkers. Hence, finding the

right dataset for evaluation could be a challenging task in the field of program verification.

Hobbit test programs further required program translation but the experiments showed

that FuzzDiff can prove to be inaccurate in determining functional equivalency. However,

on the flip side, it was able to identify a bug in one of the wrongly classified equivalent

methods in the ARDiff dataset, which shows the effectiveness of fuzz testing and its ca-

pabilities in finding smallest of differences in behaviour of two given programs. It further

shows its potential if subjected to real-world refactoring tasks.

We evaluate FuzzDiff on the two datasets using the default Zest algorithm configured

in JQF. It will be interesting to see how well FuzzDiff performs on other coverage-guided

fuzzing algorithms like AFL [8], PerfFuzz [24] for the same test programs.
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Chapter 6

Conclusions & Future Work

6.1 Conclusion

In this study, we aim to examine the possibility of proving functional equivalency of two

programs using fuzz testing and structural analysis. To achieve this, we attempt to build

a program equivalence checker called FuzzDiff, which is based on JQF’s feedback-directed

fuzzing mechanism. It uses property-based testing technique and semantic analysis to

verify if two Java programs are equivalent before and after refactoring. We first provide

some background and motivation of the study, framing the research question on the basis

of the hypotheses. We then expand on the problem statement, covering several formal

definitions and discussing various state-of-the-art equivalence checkers like PatEC [17],

PEQTest [19], ARDiff [12], SymDiff [22] and Hobbit [26]. We then throw some light on

the underlying working of the two frameworks JQF [30] and Junit QuickCheck [4] and

describe the functioning of fuzzy generators. A Generic generator is designed and imple-

mented to address the shortcomings of QuickCheck based generators.

We then devise a novel approach of checking two Java programs for equivalency by defin-

ing a set of functional requirements and the success criteria for equivalency. Considering

all the requirements, we propose the design of the prototype tool by describing in detail

the several components involved in the architecture. We then discuss the implementation

of the utility in detail and take a deep dive into the program verification process. The

outlined limitations and drawbacks of the tool tell that FuzzDiff is still a work in process

and requires several enhancements in terms of its implementation in order to provide

support to wide range of applications. The assertions are tightly-coupled to certain type

of programs and the tool requires manual intervention in certain scenarios. Yet, FuzzDiff,

in its prototype phase, proves to be a viable solution to tackle most program equivalence
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tasks.

Finally, we evaluate the tool on two benchmarks, one facilitated by the creators of ARDiff

[5] and other by the creators of Hobbit [21]. We test a total of 73 pair of test programs in

the ARDiff test suite, and 17 pairs in the hobbit test programs. We manually translate

the 17 OCaml programs to Java for performing the evaluation on FuzzDiff. We then re-

port the result of the evaluation which show that FuzzDiff performs better on the ARDIff

dataset and equally poor on the OCaml. Moreover, it was able to identify a misclassified

test program in the dataset due to rigorous random sampling of inputs. The effectiveness

of the tool in solving program equivalence is still subjective to the type and complexity of

the input programs. The experiments and inferred results may not be the ideal metric for

judging the ability of the tool, but it proves to be effective in most day-to-day refactoring

scenarios.

With this study, we answer all the research questions raised at the beginning and con-

clude it by correctly verifying the hypotheses. The promising results show that the tool

is headed in the right direction and requires further development to achieve the aim with

which it was originally designed for.

6.2 Future Work

In this section, we give a brief overview of the limitations of FuzzDiff and discuss its future

scope in context to improvements which can improve its usability and efficiency. FuzzDiff

is a prototype tool in its first version, and hence few compromises were made during the

development phase in terms of its usability and compatibility to achieve the research goal.

The tool shows great potential and can be further improved to make more capable and

user-friendly.

The proposed Generic Generator comes with its own set of limitations in terms of the data

types it can support. Hence, it can be made further generic to support Collection data

structures like ArrayList, Hashset, LinkedList by integrating readily available QuickCheck

Generators. Further, code changes are required if a parameterized constructor is used in

the test class. These manual changes are mainly due to dependency on Java reflection

API which needs to be reduced in general. The error handling can be improved in the

Generic generator as well in the future.

As future work, further assertions and conditions can also be added to cover all possible
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scenarios and add complexity in equivalence checking mechanism. Semantic checking can

be developed further by conducting a more in-depth structural analysis of the method

invocations in the test method. For instance, the parameter values of invoked method

can be verified for both the programs and those values can be shown to the user in case

the order of the invocations is not same.

There are several ways of writing a code with an object oriented programming language

and Java being statically typed makes it further difficult to fully generalize and automate

the verification tasks. And hence, there are a lot of instances where the user is expected

to make changes manually in the code. However, based on the requirements of the user,

the testing can be fully automated by dynamically generating the code using tools like

ASM, javaassist, bcel etc.

In terms of support for Java programs, the tool can be instrumented further to be com-

patible with higher-order programs, taking into consideration object oriented principles

like encapsulation, abstraction, polymorphism and inheritance.

In terms of usage, the tool can be further enhanced to provide even better user inter-

face to user. The user can be provided with more options for tuning the fuzzing like

execution time, number of executions etc. Additional flexibility can be provided by al-

lowing the user to decide if they want either fuzz checking or semantic checking or both.

The resultant output can be intuitively presented to the user by parsing the output trace

and showing only relevant information if case of failures, helping developer identify the

bug easily.
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Appendix

Here, we show the shell script that triggers the start of FuzzDiff. It seeks input from

the user and sequentially executes a number of maven commands to provide user with a

output indicating if the two input programs are equivalent or not.

#!/ bin / bash

echo ”Or i g i na l c l a s s name : ”

read o r i g i n a l

echo ””

echo ”Refactored c l a s s name : ”

read r e f a c t o r ed

echo ””

echo ”Method name : ”

read method name

echo ””

echo ”Fuzzing . . . . . ”

OP=$ (mvn exec : java −Dexec . args=” $ o r i g i n a l $ r e f a c t o r ed $method name” )

echo ””

#echo ”$OP”
s l e e p 5

SUB=”ASSERTION FAILURES”

MNF=”METHODNOTFOUND”

CNF=”CLASS NOT FOUND”

FAIL=”BUILD FAILURE”
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i f [ [ ”$OP” == ∗”$CNF”∗ ] ] ; then

echo ”−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−”

echo ”Error : One or both c l a s s ( es ) not found in c l a s s e s / d i r e c t o r y ”

echo ”−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−”

s l e e p 10

exit

f i

i f [ [ ”$OP” == ∗”$MNF”∗ ] ] ; then

echo ”−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−”

echo ”Error : Method $method name not found in one or both c l a s s e s ”

echo ”−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−”

s l e e p 10

exit

f i

i f [ [ ”$OP” == ∗”$SUB”∗ ] ] ; then

echo ”−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−”

echo ”RESULT: The two programs are not equ iva l en t . ”

echo ”−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−”

echo ”There were f a i l u r e s in fuzz t e s t i n g .

Reproducing f a i l u r e s and gene ra t ing coverage f i l e . . . . . . ”

mvn j q f : repro −Dor i g ina l=$ o r i g i n a l −Drefactored=$ r e f a c t o r ed
−DmethodName=$method name

−Dclass=ProgramEquivalenceTest

−Dmethod=fuzzTestForEquiva lence

−Dinput=ta rg e t / fuzz−r e s u l t s /ProgramEquivalenceTest

/ fuzzTestForEquiva lence / f a i l u r e s

−DlogCoverage=coverage . txt −DprintArgs

−DdumpArgs=r e s u l t /

s l e e p 20

exit

else

echo ”There were no f a i l u r e s in fuzz t e s t i n g .

Reproducing r e s u l t s and gene ra t ing coverage f i l e . . . . . . ”

COV=$ (mvn j q f : repro −Dor i g ina l=$ o r i g i n a l −Drefactored=$ r e f a c t o r ed
−DmethodName=$method name

−Dclass=ProgramEquivalenceTest

−Dmethod=fuzzTestForEquiva lence
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−Dinput=ta rg e t / fuzz−r e s u l t s /ProgramEquivalenceTest

/ fuzzTestForEquiva lence / corpus

−DlogCoverage=coverage . txt −DprintArgs

−DdumpArgs=r e s u l t /)

f i

echo ””

s l e e p 5

echo ”Executing semantic t e s t s . . . . . . . . . . . . . . . . ”

echo ””

RESULT=$ (mvn test −Dtest=”Addit ionalChecksTest ” )

SUC=”SUCCESS”

echo ”−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−”

i f [ [ ”$RESULT” == ∗”$SUC”∗ ] ] ; then

echo ”RESULT: The two programs are equ iva l en t . ”

echo ”−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−”

else

echo ”RESULT: The two programs are not equ iva l en t . ”

echo ”−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−”

echo ”$RESULT”
f i

s l e e p 120
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