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Supervisor: Professor Arthur White

In this thesis, an automated systematic review was conducted on two datasets using text
mining and machine learning strategies on the abstracts in the pharmaceutical domain.
Manual Systematic Literature Review had already been performed on the two datasets.
The datasets were preprocessed and tokenised to ensure the availability of the best set of
features for the process of feature generations. Both the datasets were split into training
and test data proportionately to their structure, ensuring an appropriate amount of train-
ing and testing information and a similar split between inclusions and exclusions. Term
Frequency - Inverse Document Frequency(TFIDF) is used to generate textual features
from the particular corpus of documents. Features having maximum weights are used for
one dataset, and features having weights closer to the variance were used for the other.
1:2 downsampling was also performed for one dataset to balance the extremely unbal-
anced dataset. Four Classification models namely: Logistic Regression, Support Vector
Machine (SVM), Naive Bayes (Gaussian) and Bagged Classification and Regression Trees
(Bagged CART) are used to make predictions on test segments of the datasets. Naive
Bayes outperforms all models with a Sensitivity of 1, predicting 4/4 and 5/5 relevant
documents in both the datasets. The results are also compared with similar works in the
automated Systematic Literature Review domain. The analysis shows that the strategy
to use machine learning algotihms for Systematic Literature Review looks promising and
should be further explored.
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Chapter 1

Introduction

1.1 Background

Systematic Literature Review(SLR) is the process of analysing and reviewing existing

and recorded work for a particular topic in a systematic manner. Referenced from Fink

(2019) a Systematic Literature Review is defined as ”systematic, explicit, comprehensive,

and reproducible method for identifying, evaluating, and synthesizing the existing body

of completed and recorded work produced by researchers, scholars, and practitioners”.

The process is extremely prominent in a lot of domains for articulating and assessing

information in an organised manner. In the pharmaceutical domain, the methodology

usually involves searching publicly available medical databases and collating a list of

documents relevant to it. The documents are then screened manually using abstract to

further filter out the documents. The final set of documents are then manually reviewed

through a full text analysis. The process is usually conducted by multiple people so as to

reduce any inaccuracies.

Hence, the procedure takes a significant amount of time to be conducted since a lot

of information has to be carefully analysed and documented. This is also because if any

relevant information is missed by the reviewers it can be extremely consequential for the

organization conducting the review. Hence, multiple reviewers are often utilised to repre-

sent as fact checkers for the process. Also, since a limited set of documents are preferred

for the full text analysis, a lot of documents are filtered out at the abstract screening

stage. Hence, abstract filtering is a very critical stage in the methodology.

Therefore, our research applies and analyses the usage of text mining techniques and
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machine learning models to perform Systematic Literature Review on a corpus of doc-

uments. The research focuses on generating text features from the abstract present in

the corpus of documents and use machine learning models to predict the relevant set

of documents Also, the corpus should have had a manual Systematic Literature Review

conducted on it so that we can compare the accuracy of our methodology.

1.2 Research Question

The research question of this dissertation is to implement an automated identification of

relevant studies in systematic review using text mining and machine learning strategies,

focussing on a pharmaceutical context.

The research objectives put forth to evaluate this question are:

• To identify a corpus of documents relevant to Systematic Literature Review in the

pharmaceutical context. A Manual SLR should also have been manually performed

on the dataset.

• Extract and preprocess relevant data to make it feasible for text mining and machine

learning techniques.

• Analyse and implement different machine learning techniques pertaining to text

mining for features generations.

• Analyse and compare the different classification models to predict relevant docu-

ments for a certain set of keywords with maximum accuracy.

1.3 Motivation

The systematic literature review is considered to be a very effective methodology for col-

lecting and analysing existing scientific knowledge of a specific scientific area in a system-

atic manner, and is therefore becoming increasingly common Shojania et al. (2007). This

methodology is also recommended as a superior collection of evidence regarding the state

of current knowledge in the required field, or to corroborate the existence or otherwise

of a given relationship (Shojania et al. (2007), Stros and Lee (2015), Mulrow et al. (1997)).

In the pharmaceutical context, the process of information gathering is very comprehen-

sive. Even a general process of finding definitions such as Personalised medicine (PM) is

done using a process which starts with searching for relevant information on PubMed us-

ing relevant keywords (Schleidgen et al. (2013)). A data extraction process from abstract
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and full text is developed and then the articles are filtered down based on the relevance of

the information present in the set of articles. To reduce complexity of the resulting list,

summary categories are also developed from the data.

In a much more complex scenario such as in Nam et al. (2014) where the evidence of

the efficacy of biological disease-modifying antirheumatic drugs (bDMARD) needed to

be updated for European League Against Rheumatism (EULAR) recommendations, the

process gets further more comprehensive. In this process research papers were screened

for the period of January 2009 and February 2013 using databases such as Medline, Em-

base and Cochrane. The initial search results yielded 10265 articles out of which 134 were

selected for detailed review. After further analysis of the filtered articles, a total of 51 full

papers and 57 abstracts ended up meeting the inclusion criteria.

The complexity of the process is also not just limited to the amount of the data that

has to be filtered and processed but the quality and diversity in the human resource that

is required for it. This can be illustrated in a scenario such as in Ash et al. (2012), where

the available evidence for the efficacy and safety of Nonsteroidal Anti-Inflammator drugs

(NSAIDs) was reviewed. During the process, a total of 30 rheumatologists, several of

whom were also epidemiologists, one dermatologist, one infectious disease specialist and

one one infectious disease specialist worked together to gather the relevant evidence.

Thus, we can safely conclude that the process of Systematic Literature Review in the

pharmaceutical industry is both time and resource intensive. Intuitively, one can infer

that the initial screening where thousands of articles are reviewed is the most time con-

suming aspect of the entire process.

Therefore, an automated way to expedite and improve this process of filtering down

the set of relevant articles for review can definitely be helpful to the research commu-

nity. Machine Learning and Text Analytics strategies are expected to be instrumental in

solving such scenarios where the filtering process is based on certain keywords.

1.4 Theseis Overview

Text mining and classification techniques are prominently used to analyse a corpus of

documents in various domains. Hence, this dissertation attempts to perform an auto-

mated systematic review using text mining techniques on the abstract sections of two sets

of data. Both the datasets had a manual SLR performed on it and different sets of files

3



pertaining to the abstract screening and full text screening stage. Since, the methodol-

ogy extracts textual features from a given corpus of documents, this dissertation firstly

ensures that a correct set of prospecting features(words) are available for it.

Since the number of documents found relevant in manual SLR for the final stage(full

text analysis) was extremely less, the dissertation focused on the abstract analysis stage.

Both sets of data are first pre-processed by labelling the relevant documents that made

it through the abstract screening phase. The corpus information was then filtered so

that each document had only information that was relevant to our analysis present. To-

kenization was then performed on the abstract of each document removing all common

words and text irregularities and a tokenized version of the abstract was created. The two

datasets were then split into training and test data ensuring almost the same proportions

for splitting of included documents.

Term Frequency-Inverse Document Frequency(TF-IDF) and Latent Semantic Analysis are

both explored for feature extraction from the two datasets and TF-IDF was subsequently

evaluated more suited for the analysis. Features are extracted using TF-IDF for both

the training datasets. Due to extremely imbalanced data present in one of the dataset,

1:2 Downsampling is performed to balance the number of inclusions to the number of ex-

clusions. Four different classification models namely Logistic Regression, Support Vector

Machine (SVM), Naive Bayes and Bagged Classification and Regression Trees (CART),

are then trained and used for making predictions on the test data version of both datasets.

This dissertation is structured as follows: Chapter 2 lists out the relevant works done

in each aspect of our analysis, Chapter 3 then displays the methodology followed for our

analysis. Chapter 4 presents the results and experiments pertaining to our analysis and

the final chapter concludes our thesis and lists out possible future work relevant to it.
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Chapter 2

Literature Review

A similar objective to achieve Systematic Literature Review through the usage of machine

learning model was achieved in Popoff et al. (2020). The analysis also predicted a rea-

son for exclusion as per the PICOS (population, intervention, comparator, outcomes, and

study design) reasoning framework (Maharaj et al. (2015)). A word frequency matrix was

created and from that a document matrix was created for the feature generation. Rare

words(words occurring less than 5,10,100) were also removed to increase the efficiency.

Downsampling was performed to increase the efficiency of the models since the relevant

documents tend to be 5-10% of the entire corpus.

The authors performed both abstract and full text analysis and found the accuracy of the

abstract analysis almost at par with the full text analysis. SVM(with hyperparameters)

was found to be the best model achieving Sensitivity of 1 in 3 out of 5 datasets. On

average, the authors were able to achieve a recall of 75% of excluded documents and an

accuracy of 83% in terms of successfully determining the reason for exclusion.

2.1 Systematic Literature Review

The process that is used for the systematic review is usually a multi step process where

the relevant literature is first identified using a relevant keyword search in databases such

as PubMed, CINAHL and COCHRANE (Popoff et al. (2020)). The document is then

usually screened using abstract and titles to further narrow down the filtered set. This

filtered set of documents then underwent a complete and comprehensive full text review

to generate the final set of relevant documents.

This process is usually (but not limited to) conducted by 2 independent reviewers and
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their results are then collated to reduce the amount of errors. The reviewers need to have

a clear understanding of the eligibility criteria for the set of documents for both the initial

screening and the full text review (Higgins et al. (2019)). Figure 2.1 illustrates a similar

process of filtering of the documents to examine the impact of rapid response teams on

hospital mortality (Maharaj et al. (2015)).

Figure 2.1: Literature Search Flow diagram demonstrated in Maharaj et al. (2015)

There have been various studies indicating and encouraging the usage of machine learn-

ing and text mining techniques to improve the process of Systematic Literature Review
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in different domains (Adeva et al. (2014), Frunza et al. (2010), O’Mara-Eves et al. (2015)).

These algorithms are trained on sample data to learn the patterns or information that

is relevant to the classification. The relevant information about the classification of data

can be evaluated based on the training data that is exposed to the model. In the con-

cept of SLR, the prevalent practice is to use abstract and title to generate training data

(Adeva et al. (2014), Frunza et al. (2010), O’Mara-Eves et al. (2015)). There has also

been evidence that the classification algorithm could be used as a fact checker or second

screener for the purpose of reducing human error (Adeva et al. (2014)). The authors were

able to reach a value of 84% in terms of overall precision and recall which is very promising.

This is also supported by Frunza et al. (2010) where a system-human performance matrix

was generated for an automated systematic review classification. This was done to eval-

uate and update the performance of the generated model and render inferences based on

the same. Figure 2.2 illustrates the architecture of the process used to build automatic

text classification.

Figure 2.2: Embedding automatic text classification in the process of building a systematic
review depicted in Frunza et al. (2010)
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2.2 Feature Generation techniques

2.2.1 Term Frequency - Inverse Document Frequency (TF-IDF)

Term Frequency Inverse Document Frequency (TF-IDF) is a very prominent approach

in Natural Language Processing techniques for feature extraction. It is also expected to

outperform other similar techniques such as Latent Semantic Analysis (LSA) and Linear

Discriminant Analysis (LDA) when it comes to large datasets ( Dzisevič and Šešok (2019)

). It is also expected to perform better than standard BM25 feature extraction technique

(Kadhim (2019)).

TF-IDF strategy is also effective in combination with other deep learning and NLP tools

such as Word2Vec and Doc2Vec models where the score can be improved by considering

the weights provided by TF-IDF vectorizer (Liu et al. (2018)). There are also instances

where the tokenized documents are vectorised using the “TF-IDFVectorizer” for use as

input to the SVM baked machine learning classifier (Kumar and Subba (2020)) as illus-

trated in Figure 2.3.
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Figure 2.3: Architecture of the proposed TF-IDFvectorizer and SVM based sentiment
analysis framework depicted in Kumar and Subba (2020)

In most cases TF-IDF is expected to be simple and effective, but this approach can

have certain drawbacks. If the document corpus is extensive, this strategy can generate

feature vectors with a large number of dimensions, which potentially could increase the

chances to overfit the classification model Dzisevič and Šešok (2019). It is also expected

that the TF-IDF model doesn’t take similarities of the different features in account when

generating the feature matrix which can also cause a decrease in the classification accuracy.

In Nafis and Awang (2021), a recursive filtering strategy of TF-IDF was used to ob-

tain the optimal accuracy and enhance the feature extraction process. The authors first

computed the term document matrix of the entire corpus and computed the variance of

the weights assigned in it. The Features having a lower weighted score than the total

variance were discarded and a new TF-IDF matrix was created. This process was done

iteratively and the efficiency of the used model was tabulated. The most optimal set of

features with the maximum accuracy were then finally used for evaluating the results.
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2.2.2 Latent Semantic Analysis (LSA)

Latent Semantic Analysis (LSA) is also another technique that is widely promoted in

the usage for feature extraction in an NLP framework. It is a modification of the TF-

IDF strategy applying an algorithm for reducing dimensionality in the process of feature

extraction (Dzisevič and Šešok (2019)). In Dong et al. (2006), the authors used LSA

primarily because it is an efficient methodology for implementing summary based classi-

fication which was prevalent for the semantic analysis being executed.

In Nafis and Awang (2021), LSA was also used to extract semantic knowledge from the

corpus of documents through feature extraction. The term frequency vector was then used

to calculate the similarity of two similar blocks and to identify the pattern of a question

sentence.

2.2.3 Bag of Words (BOW)

In Gabrilovich and Markovitch (2005), Bag of Words strategy was also implemented to

check the performance of a text classification model with and without feature extraction

and it was found that bag of words definitely improved the overall categorization. A

similar strategy was also used in Alahmadi et al. (2013), where vector space modelling

was implemented along with a bag of model strategy using a BOW scheme generating an

85% and above accuracy for the same.

2.3 Machine Learning Models

2.3.1 Logistic Regression

In Shah et al. (2020), a comparative analysis of different models was performed on doc-

uments pertaining to different categories using TF-IDF. As we can observe from Figure

2.4, the Logistic Regression model was able to outperform the rest of the models in most

of the categories. A similar result was also achieved in Joshi and Abdelfattah (2021),

where the authors used different machine learning models, including Logistic Regression

to classify online reviews related to drugs. Logistic Regression along with TF-IDF classi-

fication was able to generate an accuracy score of more than 80%.
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Figure 2.4: Categories versus precision showing variations of data set classes with respect
to change in precision depicted in Shah et al. (2020)

2.3.2 Support Vector Machine (SVM)

In the text analytics and NLP domain, Support Vector Machine(SVM) modelling tech-

niques are very prominently used for classifying the data in different classes Adeva et al.

(2014). This modelling technique is also very widely used in the medicine domain as the

penalty parameter can be altered easily to make changes for underfitting and overfitting

the data(Dong et al. (2006)). As per Adeva et al. (2014), where automatic text classifica-

tion has been implemented for systematic reviews, it is also expected to outperform other

models in terms of accuracy and recall.

In Liu et al. (2010), where classification was performed for text categorization in fields

such as sport, political, art, environment, SVM performed much better than the rest of

the models. Figure 2.5 shows the accuracy comparison of SVM achieving more than 85%

in all the topics.

However in Colas and Brazdil (2006), where the classification accuracy of SVM was

compared with some older classification models such as Naive Bayes, it was found that

the accuracy was almost at the same level. Despite varying the penalty parameter and

using various kernels, the accuracy was more or less at par with the rest of the mod-

els. It was also concluded that while the strength of SVM lies in classifying non linear

classification data, Naive Bayes and others are still worth considering for their simple

implementation and much faster in use as compared to SVM.
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Figure 2.5: The comparison of Comprehensive index F1 value from Liu et al. (2010)

2.3.3 Naive Bayes

Some literature such as Frunza et al. (2010) also suggested that Naive Bayes performs

better in the scenario where class imbalance is prominent. The authors performed auto-

mated selection of systematic reviews by using a per question classification method using

an ensemble of classifiers including Naive Bayes and were able to get a recall of 70%-90%

in different types of categorization of questions.

Naive Bayesian classification was also compared with SVM in Hassan et al. (2011) and it

was concluded that naive bayes was a better choice if any external knowledge base corpus

was used. It increased the accuracy by 29% over the baseline model that was implemented.

In Hassan et al. (2011), Naive Bayes performance was also compared with SVM on text

classification and sentiment analysis of chapters in early American poetry novels. Both

the models depicted high accuracy but Naive Bayes classifier was found to be the more op-

timal one as it displayed higher accuracy across all types of sections. Figure 2.6 displays

the accuracy plot of both the models as the training set fraction is increased.

12



Figure 2.6: SVM and Naive Bayes learning curves depicted in Hassan et al. (2011)

2.3.4 Bagged Classification And Regression Trees (Bagged CART)

In Ibrahim et al. (2021) where a comparison study was drawn based between different

types of models using Youtube Spam Collection Dataset based on 5-fold and 10-fold cross

validation, the BAGGED CART model performed almost at par with the SVM in terms of

accuracy. Figure 2.7 depicts the performance box analysis of all the models with CART

and SVM both having almost similar accuracy.
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Figure 2.7: Performance of base machine learning algorithms using 10-fold cross validation
presented in Ibrahim et al. (2021)

In Popoff et al. (2020), the Bagged CART classification model was also implemented

for classifying the documents for inclusion and exclusion of the Systematic Literature

Review of Medical data. It was found to be comparative in performance with SVM

having an almost similar accuracy in both abstract and full text analysis.
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Chapter 3

Methodology

3.1 Data Preparation

3.1.1 Data Description

The dataset used for analysis was obtained using electronic databases such as EMBASE,

MEDLINE (via EBSCO), and CENTRAL (via the Cochrane Library). The data for

the relevant studies searched from 01 January 2000 to 21 November 2020. Proceedings

from the American Society of Hematology (ASH) and European Hematology Association

(EHA) Annual Conferences were hand searched for the years 2014 to 2020. Terms used

in searching of conference proceedings included: ‘tisagenlecleucel’, ‘ELIANA’, ‘ENSIGN’,

‘tisa-cel’, ‘blinatumomab’, ‘FLA-IDA’, ‘FLAG-IDA’, ‘acute lymphoblastic leukaemia’, and

‘paediatric’. EMA EPARs of tisagenlecleucel (7) and blinatumomab (8), and clinical trial

reports from ClinicalTrials.gov (www.clinicaltrials.gov) were also searched. The fil-

tering of articles were restricted to those published in English.

There were two datasets that were collated based on the Clinical and High Related Quality

of Life (HRQOL) standards (Ashing-Giwa (2005)) divisions. Both dataset had a manual

Systematic Literature Review conducted on it based on the standard PICOS (population,

intervention, comparator, outcomes, and study design) reasoning framework (Maharaj

et al. (2015)). Table 1 and Table 2 in the Appendix section depicts the inclusion and

exclusion strategy used for Clinical and HRQOL divisions in the process, respectively.

The manual Systematic Literature Review had yielded two folders pertaining to both

the divisions, respectively. In each of the folders, there were 3 documents present. Firstly,

one with the list of entire citations generated from the keywords search from different

electronic databases. Secondly, the ones that were selected for the full text analysis and
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finally, the ones that were found relevant at the end of the Systematic Literature Review.

Table 3.1 and Table 3.2 depicts the data along with the document count in each stage

for Clinical and HRQOL fields respectively.

Table 3.1: Manual Systematic Literature Review datasets for Clinical standards

File Name File Format No of Entries

All Clinical SLR Citations.txt

TY, AB, KW, ID,

LA, M3, N1, PY, SN,

SP ,ST ,T2, TI, UR,

VL, ER

2132

All Clinical SLR Full text.xlsx Title, Journal, Authors 51

All Clinical SLR included.xlsx Title, Journal, Authors 2

Table 3.2: Manual Systematic Literature Review datasets for HRQOL standards

File Name File Format No of Entries

All HRQOL SLR Citations.txt

TY, AB, KW, ID,

LA, M3, N1, PY, SN,

SP ,ST ,T2, TI, UR,

VL, ER

257

All HRQOL SLR Full text.xlsx Title, Journal, Authors 21

All HRQOL SLR included.xlsx Title, Journal, Authors 1

As it can be observed from Table 3.1 and Table 3.2, since the dataset in the final stage

of inclusion has only 1 or 2 documents. The complexity for a machine learning model

to predict 1 or 2 documents on such a limited dataset seemed excessive and hence we

decided to model our analysis to screen the first stage of the systematic literature review.

For example, for the Clinical dataset we would be focussing on generating predictions

using All Clinical SLR Citations.txt and All Clinical SLR Full text.xlsx (51 documents

included from 2132 documents).

Clinical Citations Dataset

Table 3.3 is a sample of a citation in Clinical citations dataset. The important attributes

pertaining to our analysis are ID(Document Id), TI(Title), AB(Abstract) and KW (Key-

words).
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HRQOL Citations Dataset

The important attributes pertaining to our analysis are ID(Document Id), TI(Title),

AB(Abstract) and KW (Keywords). The structure of the file was similar to that of the

Clinical Dataset File (Table 3.3)
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Table 3.3: Sample of Clinical Dataset

Keyword Value

TY JOUR

AB Clofarabine [Clofrex™] is a purine nucleoside in development with...

C1

clofarex(Bioenvision)

clofarex(Ilex Oncology)

clofarex(Southern Research,United States)

C2

Bioenvision

Ilex Oncology

Southern Research(United States)

DB
Embase

Medline

DO 10.2165/00126839-200405040-00005

IS 4

KW

antineoplastic agent

clofarabine

cytarabine

DNA directed DNA polymerase beta

orphan drug

oxidoreductase

purine

purine nucleoside derivative

ribose. . .

LA English

M3 Article

N1
L39099110

2004-08-31

PY 2004

SN 1174-5886

SP 213-217

ST Clofarabine

T2 Drugs in R and D

TI Clofarabine

VL 5

ID 1476
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For both the dataset it can be inferred that each document consists of a lot of attributes

which are not relevant to our methodology and can be filtered out. Also, since in most

of the research we found abstract analysis to be almost at par with the full text analysis

(Popoff et al. (2020),Adeva et al. (2014),Frunza et al. (2010),O’Mara-Eves et al. (2015)),

we focus most on the abstract text for data processing.

3.1.2 Data Preprocessing

As mentioned before, the dataset of each document had a lot of attributes that were

not relevant to our experimentation. Also, our dataset was not cohesively present in one

document. We went through different procedures to process the data for it to be ready

for analysis discussed below.

Generate Citations data

Firstly, we went through the Full text files to recognise the files that were selected for full

text review for both Clinical and HRQOL dataset. For these files we manually mapped

the relevant file in the citations data with the label “IN” as True. Table 3.4 gives a

reference to the the mapped document displayed in Table 3.3 (Clinical Dataset)

Table 3.4: Preprocessed version of Sample data

Keyword Value

TY JOUR

AB Clofarabine [Clofrex™] is a purine nucleoside in development with...

TI Clofarabine

KW

antineoplastic agent

clofarabine

cytarabine

DNA directed DNA polymerase beta

orphan drug

oxidoreductase

purine

purine nucleoside derivative

ribose. . .

ID 1476

IN True

Others..
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Generate Processed File

We needed to generate a processed file which contained only relevant information for our

analysis. Since, this was not an HTML or XML file, mark up language based adaptations

couldn’t be used. Hence, we implemented a strategy which worked on the below mentioned

steps to generate the processed file.

1. Filter out relevant data

We needed to filter out only the relevant attributes for our analysis. The relevant at-

tributes included attributes such as ID(Document ID), AB (Abstract), IN(Included-

Only present for included files) and KW(Keywords).

2. Make KW one line text

KW attribute values were also present in separate lines. So we ensured that the

processed file had KW value present in one line for faster analysis.

3. IN attribute for each document

Also, since in the previous stage, the “IN” attribute tag was only present in the

included documents. The processed files ensured that each document had an “IN”

attribute with its value being True for those included in the full review file and False

otherwise.

Table 3.5 displays the processed version of the preprocessed sample.

Table 3.5: Processed version of Sample data

Keyword Value

ID 1476

AB Clofarabine [Clofrex™] is a purine nucleoside in development with...

KW antineoplastic agent clofarabine cytarabine DNA..

IN True

Tokenizing the Abstract

Since we needed to generate the text features for our analysis, we decided to generate a

tokenized file for both the Clinical and HRQOL processed file which contained a “TK”

attribute having the value as the tokensied version of the abstract. For this purpose we

implemented a tokenizer which followed the steps mentioned below for each document’s

abstract present in citations text.
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1. Remove unwanted text

This process removed all unwanted text such as single quotes, unwanted lines with

special characters, digits and words containing digits, punctuation and non breaking

new line characters. It also replaced all extra spaces with single space.

2. Generate Tokens

In this process we first tokenized the abstract and generated tokens. These tokens

were then shifted to lowercase. Finally, stopwords were filtered from tokens using

the spacy library. A tokenized string was then generated using the tokens with a

single space in between.

3. Generate tokenized file

Firstly, we copied all the attributes from the processed file to the tokenized file. A

new attribute “TK” was added to each document which consisted of the tokenized

string from the spacy tokenizer.

Table 3.6 displays the tokenised version of the processed sample.

Table 3.6: Tokenised version of the sample data

Keyword Value

ID 1476

AB Clofarabine [Clofrex™] is a purine nucleoside in development with...

TK clofarabine clofrex purine nucleoside development bioenvision . . .

KW antineoplastic agent clofarabine cytarabine DNA directed DNA ...

IN True

Training and Test Data

In order to create a balanced training data, we wanted to ensure that enough inclusions

and exclusions are present for training the model. Since the document count for Clinical

and HRQOL dataset was 2132 (51 inclusions) and 257 respectively (21 inclusions), we

could observe that the data was unbalanced, especially for Clinical Dataset. Hence we

decided to split the data in two different ways for Clinical and HRQOL datasets.

For the Clinical dataset, we went for a 90% (Training Data) and 10% Test data, since we

wanted to ensure enough training data was available for the model to perform efficiently.

For the HRQOL dataset, we went for the standard 75% (Training Data) and 25% Test
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data, since we wanted to ensure enough positives for the test data to accurately measure

model accuracy.

Train test split logic was performed in a manner that ensured that almost the same

percentage of inclusions are available for both training and test data. Table 3.7 and

Table 3.8 gives an overview of the training and test data for both the dataset.

Table 3.7: Training data information for Clinical and HRQOL Dataset

Dataset (Total Count) Training Data Inclusions Exclusions

Clinical (2132) 1918 47 1871

HRQOL (257) 192 16 176

Table 3.8: Test data information for Clinical and HRQOL Dataset

Dataset (Total Count) Test Data Inclusions Exclusions

Clinical (2132) 214 4 210

HRQOL (257) 65 5 60

3.2 Feature Generation

The next step in our process was feature generation using the abstract text from the

corpus of the document. Since the HRQOL dataset is significantly less extensive than

clinical dataset and the abstract length pertaining to a document is more or less same

(same amount of words), the number of features required for analysis on HRQOL dataset

are anticipated to be ideally less as compared to Clinical Dataset.

As mentioned in Chapter 2, we found that both Term Frequency - Inverse Document

Frequency (TF-IDF) and Latent Semantic Analysis (LSA) were prominent for generating

the features pertaining to a text corpus. Hence we considered them for the purpose of

feature generation from the tokenized abstract.

3.2.1 Term Frequency - Inverse Document Frequency (TF-IDF)

TF-IDF is a prominent methodology used in text mining for generating features (Dzisevič

and Šešok (2019),Kadhim (2019),Kumar and Subba (2020)). As mentioned in Chapter 2,

this methodology’s performance is still comparable to novel adaptations(Kadhim (2019),

Liu et al. (2018)). The documents in the corpus are interpreted as key factors for term
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weighting. TF-IDF is used to calculate text feature weights using the text corpus which

can be used for model training. As explained in Liu et al. (2018), it is mainly composed of

two parts, namely Term Frequency (frequency of words) and Inverse Document Frequency

(frequency of inverse texts).

1. Term Frequency(TF): Term frequency refers to the number of occurrences of

a given word in the file. Referenced from Liu et al. (2018), the formula for word

frequency (TF) is as follows:

tfi,j =
ni,j∑
k nk,j

(3.1)

where total count of words in the corpus is denoted by k

the count of occurrences of the word ti in file dj is denoted by n and,

the summation of the occurrences of all words in the file dj is denoted by
∑

k nk,j.

2. Inverse Document Frequency (IDF): The inverse document frequency repre-

sents a measure of the general importance of a word. The entire number of docu-

ments is divided by the number of documents containing the text or word, which is

then divided by the frequency of the inverse of the word. The quotient logarithm is

then calculated. As mentioned in Liu et al. (2018), The formula for IDF is given as

follows:

idfi = log
|D|

|j : ti ∈ dj|
(3.2)

Where the total count of files in the corpus is denoted by |D| and,
the count of documents containing the word ti is denoted by |j : ti ∈ dj|”

Consequently, The weight for term i in document document (wi,j) is determined as follows,

if tfi,j is the term frequency of term i in document j, dfi is the document frequency of

term i in the corpus and |D| is the number of documents in the corpus:

wi,j = tfi,j log
|D|
dfi

(3.3)

This generates a term document matrix for the entire set of documents with the corre-

sponding weights (as mentioned in the equation) for all the text features of the document.

As we can observe from the corpus and also from Chapter 2, this will lead to a significant

amount of feature generations that can cause overfitting of our model. Hence, we needed

to identify the correct subset of features that should be used for our model training.
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3.2.2 Latent Semantic Analysis (LSA)

Another well-known method is Latent Semantic Analysis (LSA), which was originally

created to cut down on the amount of dimensions (features) that were produced in the

document matrix. LSA is a variation of the TF-IDF methodology that interprets that

phrases with similar meanings will frequently appear in the same locations throughout

the text, which is a critical assumption of the algorithm (Dzisevič and Šešok (2019)).

By producing a collection of concepts connected to the documents, the LSA approach

is used to examine relationships between a group of documents and the words they in-

clude. An extensive text corpus is utilized to create a matrix with word counts or weights

per document (TF-IDF weights matrix), and each document is represented as a column

vector in a word-document matrix. The Singular Value Decomposition (SVD) technique

is then used to reduce the number of features(dimensions) while ensuring the structure

similarity of the data.

As mentioned in Dzisevič and Šešok (2019), W (the Word document matrix) can be

broken down into three matrices if K is the total ranks of W.:

W = USV T (3.4)

Where the diagonal matrix of singular values diagonal matrix with a size of (K X K) is

denoted by S,

the left singular matrix with dimensions (M X K) is denoted by U and,

the right singular matrix with dimensions (N X K) is denoted by V .

The row column vectors of the singular matrix U are used to construct an orthonor-

mal basis for the SVD transformation of the matrix’s column vectors. The columns of

SVT provide the vectors’ coordinates. This basically indicates that the position of the

document dj in the R dimensions space is characterised by the column vectors SvTj or,

equivalently, the row vector VjS. Each row vector is linked to a document vector that is

specifically connected to each document in the training set.

For every document that is not part of the training data, it is required to add the new

document to the original training data and Latent Semantic Analysis would again have

to be reevaluated. However, as SVD requires a lot of processing power, it should not be

used ideally for every new test document.(Dzisevič and Šešok (2019)).
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3.2.3 Comparing LSA and TF-IDF

We evaluated both the strategies for the purpose of feature generation and came to the

conclusion that TF-IDF was more aligned with the analysis that we intended to perform.

The key things considered are mentioned below.

1. As mentioned above, LSA is computationally very expensive as compared to TF-

IDF and any new document would have to be added to the original training data,

with Latent Semantic Analysis being performed again. Since, the data in both

the dataset is extremely imbalanced, there is an expectation that we would have

to split the dataset in a slightly different manner to maintain balance. Adding

computational complexity would hinder the process significantly.

2. Another factor was the assumption in the LSA algorithm (mentioned above) that

the terms that are similar in meaning have tendencies to occur in similar places

of the sentence. While looking at the abstract present in the document corpus,

we found that this assumption was not entirely true when it comes to analysing

abstracts in a pharmaceutical context.

3.3 Evaluation Metrics

Since our analysis was going to be classification based to predict inclusion and exclusion

of documents from the corpus for Systematic Literature review, we selected the below

mentioned metrics for evaluation purposes. Table 3.9 defines the key terms used in our

metrics and their meaning as per our scenario.

Table 3.9: Model metric term interpretation in our analysis

Term Scenario Interpretation

True Positive Correctly identified inclusions

True Negative Correctly identified exclusions

False Positive Incorrectly identified inclusions

False Negative Incorrectly identified exclusions

3.3.1 Sensitivity and Specificity

Sensitivity (formulated for clinical terms in Lalkhen and McCluskey (2008)) is defined as

the probability of a positive test, conditioned on truly being positive. It is also called

True Positive Rate (TPR) or Recall.
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Hence, Sensitivity is calculated as:

Sensitivity =
number of true positives

number of true positives+ number of false negatives
(3.5)

In our scenario it will be translate to:

Sensitivity =
number of correct inclusions

number of correct inclusions+ number of incorrect exclusions
(3.6)

Specificity (formulated for clinical terms in Lalkhen and McCluskey (2008)) is defined as

the probability of a negative test, conditioned on truly being negative. It is also called

True Negative Rate (TNR).

Hence, Specificity is calculated as:

Specificity =
number of true negatives

number of true negatives+ number of false positives
(3.7)

In our scenario it will be translate to:

Specificity =
number of correct exclusions

number of correct exclusions+ number of incorrect inclusions
(3.8)

3.3.2 Area Under Curve(AUC) of Receiver Operating Curve

(ROC)

Receiver Operating Characteristic (ROC) Curve depicts the effectiveness of a binary clas-

sifier graphically as the classification criteria is altered. In ROC, the True Positive Rate

(Sensitivity) is plotted on the y axis against the False Positive Rate on x axis.

The area under the ROC varies from 0 to 1 and the perfect classifier has the AUC of

1. Figure 3.1 displays some interpretations of using Aread under Curve of ROC curve.

We chose this metric to graphically analyse the change in Sensitivity in different scenarios
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Figure 3.1: Area under curve from https://commons.wikimedia.org/wiki/File:Roc_

curve.svg

throughout our analysis.

3.3.3 F1 Score

F1 score is also another prominent metric to measure a model’s classification accuracy.

The F1 score is calculated as the harmonic mean of precision and recall (Sensitivity).

Here, precision, sometimes referred to as positive predictive value, is the proportion of

true positives to the total number of positives identified by the model.

In our scenario, precision will be defined as:

Precision =
number of correct inclusions

number of correct inclusions+ number of incorrect inclusions
(3.9)

Hence, F1 score is will be defined as:

F1 =
2

Sensitivity−1 + Precision−1
(3.10)
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The F1 score varies from 0(if either precision or recall is 0) to 1 (both precision and

recall are 1). While we do expect precision to be low, since the number of inclusions in a

systematic literature review is very less as compared to the total documents, we wanted

to ensure that precision was not zero and hence this metric was included in the analysis.

3.3.4 Prime metric for model performance (Sensitivity)

In a Systematic Literature review and especially in a medical or pharmaceutical context,

an incorrect inclusion(False Positive) is a significantly less impactful error than an incor-

rect exclusion (False Negative).

In a scenario where a drug’s impact on human health is being considered, false nega-

tives can be pivotal and misleading, leading to serious implications. A model predicting

high numbers of false negatives will never be considered efficient in the domain as key

information could be present in the documents that were not predicted by the model.

False Positives, on the can be manually screened off by the reviewer and thus will have

little impact on the efficiency.

Therefore, in our analysis, the prime metric to determine the efficiency of the different

models will be Sensitivity(Recall) so as to ensure a minimum amount of False Negatives.

3.4 Model Selection

For the purpose of evaluation, we chose four different types of classification models to

utilise and analyse different strategies to improve the classification accuracy. Below are

the models we used for classification of included or excluded documents for Systematic

Literature Review.

3.4.1 Logistic Regression (Baseline)

Logistic regression is one of the most basic and extensively used classification algorithms.

This algorithm uses a logistic function (Shah et al. (2020)) for the purpose of classification.

A sigmoid function is primarily used as the logistic function in the Logistic regression

model for the analysis. Figure 3.2 gives an example of the sigmoid curve that is used in

the model.
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Figure 3.2: A standard Sigmoid Function as depicted in Shah et al. (2020)

As mentioned in Shah et al. (2020), the mathematical version of the logistic version using

sigmoid function is defined as:

logit(S) = b0 + b1V 1 + b2M2....bkV k (3.11)

Where S is the likelihood that an interesting feature will be present, V1,V2...Vk are the

predictor values and b0, b1....bk are intercepts of models

The Logistic Regression model predicts the text class in the form of a word vector by

evaluating the vector of variables, coefficients for each input variable, and vector of vari-

ables(Shah et al. (2020)).

Hyperparameter tuning

The model has a penalty parameter which can be tuned to alter threshold for the analy-

sis. This is primarily done to shrink the coefficients of less contributory features in cases

where there are too many variables. Since our analysis will have an extensive feature set,

adding penalties is also something that should be explored.

It also has a hyperparameter “C” which can be altered to better fit the training data.

Higher values of C correspond to giving more weightage to training data.
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Reason for selection

In the previous chapter, we found that logistic regression, whilst being a very simple im-

plementation, still performed at par with other complex models in the text classification

domain. Hence, we chose this model because we wanted to ensure we had a good baseline

for our analysis.

Also, Logistic regression assumes that there are no linear relationships between inde-

pendent and dependent variables in logistic regression and since our feature set is an

independent word set, this is expected to hold true.

3.4.2 Support Vector Machine(SVM)

As mentioned in Chapter 2, Support Vector Machine Modelling is a very prominent mod-

elling strategy used for the purpose of text classification. The SVM algorithm is trained

by analyzing a hyperplane that serves as its decision surface and ensures the greatest

margin of separation between the positive training data and the negative ones. Figure

3.3 depicts a linear separable SVM.

Figure 3.3: Linear Separable SVM as depicted in Shah et al. (2020)

As mentioned in Sun et al. (2009), the search for such a hyperplane can be described as a

problem of minimization of w→, a vector perpendicular to the hyperplane that specifies

its orientation.

After learning w→ and the location of the hyperplane, SVM uses a decision function
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to generate a score for an unlabeled text defined by its feature vector. The sign of the

score is then used to predict the label. That instance, if the decision function predicts

larger than 0, the document is labeled positive; otherwise, it is labeled negative. A portion

of the positive and negative training instances, referred to as the positive and negative

support vectors, respectively, define the learnt hyperplane.

Hyperparameter tuning

It has a hyperparameter “C” which can be altered to better fit the training data. Higher

values of C will enable the optimiser to a smaller-margin hyperplane and conversely small

values of C will enable the optimiser to generate a larger-margin separating hyperplane,

even if that hyperplane misclassified some points.

Reason for selection

As mentioned in the previous chapter, we found that SVM is an extremely prominent

model in text classification. It is regarded as an optimal strategy in classifying imbalance

data, especially in the text mining domain. The model is expected to perform better than

most due to the hyperplane estimation for a large number of feature sets that is generated

in text classification and hence we wanted to explore the efficiency of the model.

3.4.3 Naive Bayes(Gaussian NB)

For text classification domains, Naive Bayes classifiers are frequently used. They are

based on the conditional likelihoold of the features belonging to a particular class. These

features are evaluated by feature selection methods. A major assumption in this mod-

elling strategy is that the features should be independent of each other, which makes it

an ideal model for text classification.

As mentioned in Zhang and Gao (2011), If we represent a set of documents as a vec-

tor of variables D(i), where d(i) corresponds to a letter, a word, or other properties of

some text in practice, and C is a collection of predefined classes. The process of text

classification includes assigning a class label cj from C to a document. Bayes classifier is

a hybrid parameter probability model defined as:

P (cj|D) =
P (D|cj)P (cj)

P (D)
(3.12)

Where the information from observations, which is the knowledge from the text itself to

be classified is denoted by P(D),
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The distribution probability of document D in class space is denoted by P (D|cj) and
The prior information on the occurring likelihood of the class is denoted by P (cj).

The posteriority of document D falling into each class is individually computed by the

Bayes classifier after integrating these data. The document is then assigned into the class

with the highest probability, determined by:

C∗(D) = argmax
j

P (Cj|D) (3.13)

Naive Bayes algorithm have different types of implementation based on the type of feature

vectors used and since our features set will be a weighted set with continuous values and

not discrete, we ended up using the Gaussian Naive Bayes model for our analysis.

Reason for selection

As mentioned in the previous chapter, we found that while most literature supported

SVM as the prominent model in the text mining domain, there was significant evidence

also to support that Naive Bayes performed at par if not better than SVM in many

scenarios. The independent features assumption in the Naive Bayesian model could also

be supported in our analysis. Also, we wanted to explore a more probabilistic approach

(as is implemented in Naive Bayes) to analyse the classification. Hence, we decided to

include the Naive Bayesian model also in our analysis.

3.4.4 Bagged CART

Bagging classifier is another ensemble technique which is designed to improve the stability

and efficiency of the classification and regression process of machine learning models. A

Bagged CART model is one variation of it where Bagging has been implemented over the

Classification and Regression Trees (CART). As mentioned in Zhang and Gao (2011), its

goal is to enhance the precision and consistency of machine learning algorithms used for

classification and regression. In order to create the final forecast, it combines the classifi-

cations of training sets that are produced at random. With the addition of randomization

to the construction process, these strategies are largely employed to reduce variance.

The Bagging process, also known as a ”smoothing operation,” is effective when attempt-

ing to raise the classification trees’ forecast accuracy. The fundamental tenet is that a

collection of ”weak trees” can be merged to create a stronger implementation. When a

fresh set of data needs to be categorised, all the regression trees are exposed to it, and
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their analysis is assessed. Each tree offers a ”vote,” and the class with the most number

of votes is predicted.

Reason for selection

As mentioned in Zareapoor et al. (2015), the prime reason for including a Bagged CART

model in our analysis is that our data is extremely unbalanced and a regression tree

analysis is known to be efficient in such a scenario. A Bagged Cart algorithm provides

a good alternative where the model implements weighting of the results of the trees and

reduces the variance of the dataset and overfitting.

3.5 Downsampling and Class Weights

In a Systematic Literature review process, the number of exclusions is often far more than

the number of inclusions (Popoff et al. (2020)). This can also be observed by our clinical

training dataset in Table 3.7 where there are only 47 inclusions as compared to 1918

exclusions. This is an extremely unbalanced dataset and can therefore affect the model

accuracy considerably. HRQOL dataset is still far balanced and might not require other

operations to be performed on it. But for the clinical dataset, we decided to explore the

below mentioned strategies.

3.5.1 Class Weights

Adding class weights to the models is a strategy that is used to offset model predictions to

a lower represented class. A similar methodology was used in Tan (2005), where a bigger

weight was assigned for the smaller class nearby values in the dataset and a smaller weight

was assigned for larger class nearby values in the dataset. Anand et al. (2010) also uses

a weighted SVM to improve classification accuracy through misclassification of the two

classes.

The process can be performed by adding a significantly higher class weight to the lower

represented class (inclusions in our analysis) and a proportionately lower weight to the

dominant class(exclusions in our analysis).

For example in our training clinical dataset (Table 3.7), since the ratio of the num-

ber of exclusions to the number of inclusions is almost 42:1 (1871: 47), the weight of

inclusions that should be evaluated can be 10:1, 20:1 and so on. This can be used to
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improve the classification accuracy of our models for the extremely imbalanced training

data for clinical dataset.

3.5.2 Downsampling

Downsampling is a process of random sampling from training data used to balance the

imbalanced training data. The process is expected to work well to increase the sensitivity

of the classifier for the low represented class (Prusa and Khoshgoftaar (2016)).

The process has to be performed carefully as it can cause a loss of information and

hence a random downsampling pool is recommended (Prusa and Khoshgoftaar (2016),

Cohen (2006)). Random downsampling refers to the process of choosing a random set of

exclusion(dominating class) from the training data and using that to balance the dataset.

Downsampling can be performed in a proportionate way best suited to the analysis. 1:1

downsampling will have the same number of inclusions and exclusions. 1:2 Downsampling

will have twice the number of exclusions than inclusions and so on. We decided to eval-

uate the different types of downsampling (1:3/1:2/1:1) and analyse which type was best

suited to the clinical dataset.

3.6 Summary

As mentioned in the previous chapter, a similar analysis was performed in Popoff et al.

(2020) and our entire methodology is consistent with the same. Feature generation was

done using a document word matrix and rare words were also removed during the process.

But we believed that rare words can have a significant impact when classifying documents

in the pharmaceutical domain and hence we decided not to remove them. In Popoff et al.

(2020), Downsampling was also performed with a 1:1 ratio, where random excludes were

included as the same number as inclusions. Figure 3.4 displays the overall architecture

of our analysis.
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Figure 3.4: System Architecture of our analysis
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Chapter 4

Evaluation

4.1 Feature generation using TF-IDF

As mentioned in the previous chapter, we had anticipated that the number of features for

training the Clinical and HRQOL dataset might be different. Since the number of words

used in the abstract are almost the same throughout the dataset, the Clinical dataset

generates a considerably higher feature count. The strategies used to analyse the features

to be used for the two datasets are mentioned below.

We would also like to mention that in the below mentioned analysis, we plot the fea-

ture importance graph for the baseline model (Logistic Regression). As mentioned in

Guyon and Elisseeff (2003), removal of features with a negative impact based on the score

might not be the best strategy as the model might still be predicting correctly using other

positive impact features. But, since our dataset is extremely unbalanced, we set a negative

threshold value in our analysis based on the feature importance graph and ideally would

want all features impact to be greater than that. This is done primarily because if a lot

of features are having extremely high negative coefficients in our extremely imbalanced

data, the probability of predicting an exclusion will increase significantly.

4.1.1 Clinical Dataset

After the document matrix was generated using TF-IDF vectorizer, a total of 10,108 tex-

tual features were extracted. As expected this number was huge and had to be reduced

to a lower amount so as to not cause overfitting. Also, variance that was calculated using

the by aggregating the individual column(features) weights and was evaluated to be 20.95.

We started analysing the top 50 features first to evaluate our model performance. These

36



were evaluated by summing the column weight of the features across all documents and

taking the top 50 features with highest values. We also analysed the feature correlation

that was present. Figure 4.1 gives an overview of the initial top 50 features and the

variance of the total dataset. Figure 4.2 gives the corresponding feature importance

information using the Logistic Regression(baseline) model.

Figure 4.1: Top 50 features for clinical dataset
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Figure 4.2: Features Importance graph for clinical dataset

There were 3 key inferences from Figure 4.1 and Figure 4.1:

1. There were many words such as “patients”, “case” and others that, while being

very prominent in the corpus, were having a very high negative importance value

as compared to the rest of the features.

2. Most of the features were having negative importance were having values greater

than -20. There are only 5 features having an importance value of less than -20.

Hence, we decided to set our threshold at -20. This meant that, we would ideally

want all the features to have an impact more than -20.

3. Most of the feature weights values were between 30 and 40.

As mentioned in the Chapter 2, we found evidence that textual feature extraction is found

to be optimal when using those features with weights around variance. Hence, instead of

using the top 50 features, we analysed the features within the range of (variance - 5 to

variance +5). Figure 4.3 gives the list of final 50 features and their corresponding weights

that we found in that range and Figure 4.4 gives the feature importance information using

the SVM model.
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Figure 4.3: Final features for clinical dataset

Figure 4.4: Final Features Importance graph for clinical dataset

As we can observe from Figure 4.4, the number of features having a value less than
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the threshold value(-20) is now reduced to 1 as compared to 5 earlier. Hence, we decided

to use this as the final features list for our analysis pertaining to this dataset.

4.1.2 HRQOL Dataset

Similar to the clinical dataset, we first generated a document matrix using TF-IDF vec-

torizer and a total of 5122 textual features were extracted. As expected this number

was huge and had to be reduced to a lower amount so as to not cause overfitting. Also,

variance that was calculated using the by aggregating the individual column(features)

weights and was evaluated to be 0.43.

In this scenario, since the corpus was substantially less as compared to the Clinical dataset,

we started analysing the top 30 features first to evaluate our model performance. These

were evaluated by summing the column weight of the features across all documents and

taking the top 50 features with highest values. Since the variance in this dataset was

extremely low with a lot of features just occurring once in the entire document set, we

did not use variance as a feature filtering strategy in this dataset.

Similarly to the previous dataset, we also analysed the feature importance of our baseline

model. Figure 4.5 gives an overview of the initial top 30 features and the variance of the

total dataset. Figure 4.6 gives the corresponding feature importance information using

the Logistic Regression(baseline) model.

40



Figure 4.5: Top 30 features for HRQOL dataset

Figure 4.6: Features Importance graph for clinical dataset

As we can observe from Figure 4.5 and Figure 4.6, the weights of the top features

are very less as compared to the clinical dataset. The threshold value can be inferred as
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-20 for the analysis. While almost half of the features have a negative coefficient in the

feature importance graph, only one value can be considered to have a negative impact

(¡-20). Hence we decided to use the top 30 features only for our analysis in this particular

feature set.

4.2 Class weights and Downsampling

As mentioned in Chapter 3, these strategies are used for balancing an unbalanced dataset

to enhance the accuracy of the prediction model. Since in our analysis, the Clinical train-

ing dataset is extremely unbalanced as per Table 3.7 (1871 exclusions and 47 inclusions),

we had anticipated the usage of these strategies for it. HRQOL training dataset (Table

3.7) was found to be much more balanced as compared to the Clinical dataset and these

strategies were not used for the same. Table 4.1 gives an overview of the different models

accuracy on the Clinical dataset before applying any of the class balancing strategies.

Table 4.1: Initial Accuracy Metric for Clinical Dataset

Model Sensitivity Specificity F1 score AUC
Logistic 0 1 0.98 0.4
SVM 0 1 0.98 0.5
Naive Bayes 0 0.85 0.83 0.28
Bagged CART 0 0.99 0.97 0.54

As we can infer from Table 4.1, sensitivity in no model exceeds 0 because of the highly

imbalanced data.We can also conclude from Table 3.8 that since 98% of the clinical test

data are exclusions, most of the models are only predicting exclusions and generating a

high accuracy score as a result. Hence, we decided to use the class balancing strategies

for the clinical training dataset and use our baseline model (Logistic Regression) as the

rationale of this analysis.

4.2.1 Class weights

As mentioned in the previous chapter, since our clinical training dataset is extremely

unbalanced, we decided to use extreme weights for inclusions as compared to inclusions.

Since the summation of the weights of both the classes is expected to be 1, the exclusion

class weight was taken to be the difference of 1 and inclusion class weight. Figure 4.7

gives an overview of how the sensitivity and specificity changes when the inclusion class

weight is varied using the Logistic Regression model.
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Figure 4.7: Variation in Sensitivty and Specificity with different inclusion class weights

As we can observe from Figure 4.7, sensitivity and specificity attain the most optimal

value when inclusion class weight is around 0.98, before getting completely biased towards

inclusions (Sensitivity=1, Specificity=0). Consequently, the exclusion class weight is 0.02

for the same. But when we evaluated the model predictions, we found that it was still

predicting more than half the documents (135 documents out of 214) as inclusions.

Also, the strategy was extremely unscalable, with the value of sensitivity changing very

quickly in a very short range of weights. For both of the above listed reasons, we decided

to not use class weights in our final analysis.

4.2.2 Downsampling

As mentioned in the previous chapter, Downsampling is another strategy used for balanc-

ing an extremely unbalanced dataset. We took a proportionate sample of exclusions from

our training data to balance the underwhelming class (inclusions) in our dataset. Possi-

ble examples include 1:1 downsampling (Same number of inclusions and exclusions), 1:2

downsampling (twice the number of exclusions to inclusions), 1:3 downsampling (thrice

the number of exclusions to inclusions). We decided to evaluate all 3 of the above men-

tioned downsampling for our analysis. Figure 4.8 gives an overview of the sensitivity and

specificity of the different types of downsampling using the Logistic Regression (Baseline)
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model.

Figure 4.8: Variation in Sensitivity and Specificity with different types of downsampling

We can observe from Figure 4.8 that the results are much more promising than usage of

class weights. The sensitivity remains constant for the different types of downsampling

performed. Specificity increases as the exclusion count is increased, but the increase is very

less between 1:2 and 1:3 downsampling (0.82 and 0.83 respectively). Hence, we decided

to use 1:2 downsampling to balance the classification process of the clinical dataset.

4.3 Model Evaluation using metrics

As mentioned in Chapter 3, the metrics used for our analysis are Sensitivity, Specificity,

Area under ROC curve and F1 score. Sensitivity will be the prime metric for our analysis

as false exclusions (False Negatives) are detrimental in the process of Systematic Literature

review.

4.3.1 Logistic Regression (Baseline)

As displayed in Figure 4.8, we were able to achieve a sensitivity of 0.25 with the Logistic

Regression Model for clinical dataset. The sensitivity value was slightly on the lower side

to be considered a baseline hence we decided to perform hyperparameter analysis.
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Hyperparameter Tuning

As discussed in Chapter 3, we added the penalty “l2” in the methodology and varied the

C parameter to increase sensitivity. Figure 4.9 displays the sensitivity recall along with

the different values of C.

Figure 4.9: Variation of Sensitivity with Hyperparameter C for Logistic Regression model

We can infer from Figure 4.9 that the sensitivity attains a maximum value of 0.5 for

C=100 and remains the same after it. Hence, we decided to use the minimum value of

C (100) for our analysis to avoid overfitting. Table 4.2 gives the final logistic regression

evaluation for both Clinical and HRQOL dataset and, Figure 4.10 and Figure 4.11

displays the ROC curves for the same.

Table 4.2: Logistic Accuracy Metrics for Clinical and HRQOL datasets

Dataset Sensitivity Specificity AUC F1 Score
Clinical 0.5 0.8 0.76 0.79
HRQOL 0.4 0.98 0.95 0.94
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Figure 4.10: ROC curve of Logistic Regression model for Clinical Dataset

Figure 4.11: ROC curve of Logistic Regression model for HRQOL Dataset

As we can infer from Table 4.2, Figure 4.10 and Figure 4.11, the logistic regression

model was able to predict 2 relevant documents out of 4 for the clinical dataset(2/4) and

2 relevant documents out of 5 for the HRQOL datasets (2/5).
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4.3.2 Support Vector Machine (SVM)

Without no hypertuning, the sensitivity evaluated for the SVM Model was 0 for the

clinical dataset. We then proceeded to perform hyperparameter tuning to increase the

sensitivity

Hyperparameter Tuning

As discussed in Chapter 3, we varied the C parameter to increase sensitivity. Figure 4.12

displays the sensitivity variation along with the different values of C.

Figure 4.12: Variation of Sensitivity with Hyperparameter C for SVM model

We can infer from Figure 4.12, sensitivity attains a maximum value of 0.75 for C=500

and remains the same after it. Hence, we decided to use the minimum value of C (500)

for our analysis on both the datasets to avoid overfitting. Table 4.3 gives the final SVM

model evaluation for both Clinical and HRQOL dataset and, Figure 4.13 and Figure 4.14

displays the ROC curves for the same.
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Table 4.3: SVM Accuracy Metrics for Clinical and HRQOL datasets

Dataset Sensitivity Specificity AUC F1 Score

Clinical 0.75 0.76 0.78 0.76

HRQOL 0.6 0.92 0.93 0.89

Figure 4.13: ROC curve of SVM model for Clinical Dataset
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Figure 4.14: ROC curve of SVM model for HRQOL Dataset

On observing Table 4.3, Figure 4.10 and Figure 4.11 the SVM model was able to

predict 3 out of 4 relevant documents for the clinical dataset (3/4) and 3 out of 5 relevant

documents for the HRQOL dataset (3/5). Also, the model performed better than the

baseline model (Logistic Regression) for both datasets.

4.3.3 Naive Bayes (Gaussian)

Table 4.4 gives the Gaussian Naive Bayes model evaluation for both Clinical and HRQOL

dataset and, Figure 4.15 and Figure 4.16 displays the ROC curves for the same. As we

can observe from the table, Gaussian Naive Bayes model was able to predict all relevant

documents(4/4) for the clinical dataset and all relevant documents(5/5) for the HRQOL

dataset. The model also performed better than our baseline model (Logistic Regression)

for both datasets.

Table 4.4: Naive Bayes(Gaussian) Accuracy Metrics for Clinical and HRQOL datasets

Dataset Sensitivity Specificity AUC F1 Score

Clinical 1.0 0.64 0.85 0.65

HRQOL 1.0 0.7 0.9 0.72
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Figure 4.15: ROC curve of Naive Bayes(Gaussian) model for Clinical Dataset

Figure 4.16: ROC curve of Naive Bayes(Gaussian) model for HRQOL Dataset
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4.3.4 Bagged CART

Table 4.5 gives the Bagged CART evaluation for both Clinical and HRQOL dataset

and, Figure 4.17 and Figure 4.18 displays the ROC curves for the same. Bagged CART

model was able to predict 1 relevant document out of 4 relevant documents for the clinical

dataset(1/4) and 2 out of 5 relevant documents for the HRQOL dataset (2/5). The model

did not perform better than our baseline model (Logistic Regression) for the Clinical

dataset and had the same sensitivity as the baseline model(Logistic Regression) for the

HRQOL dataset.

Table 4.5: Bagged CART Accuracy Metrics for Clinical and HRQOL datasets

Dataset Sensitivity Specificity AUC F1 Score

Clinical 0.25 0.83 0.70 0.82

HRQOL 0.4 0.97 0.82 0.92

Figure 4.17: ROC curve of Bagged CART model for Clinical Dataset
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Figure 4.18: ROC curve of Bagged CART model for HRQOL Dataset

4.3.5 Comparison of the models

Figure 4.19 and Figure 4.20 gives the Sensitivity and Specificity comparison of our four

models Clinical and HRQOL datasets respectively.
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Figure 4.19: Metric Comparison for Clincal Dataset

Figure 4.20: Metric Comparison for HRQOL Dataset

Overall, the best fitting model was found to be Naive Bayes (Gaussian) model with

53



a sensitivity score of 1 for both clinical(4/4) and HRQOL (5/5) datasets. SVM model

(with the best hyperparameter tuning) is second in performance while Bagged CART is

found to be the least performing model.

4.4 Comparison with Similar work

As mentioned in the previous chapters, our analysis is similar to the one conducted in

Popoff et al. (2020), where text mining techniques were also used to predict documents

pertaining to the Systematic Literature review (in medical domain) using 4 datasets. In

this section, we compare the results and observations between the 2 analyses.

Both Full text and abstract decisions were compared in Popoff et al. (2020), but our

methodology was based on only abstract analysis. Exclusion and inclusion criteria were

also predicted but this information was absent in our datasets.

As we can infer from Table 2 in Popoff et al. (2020), 5 different datasets were used,

in which the rate of inclusions for Abstract ranged from 1.7% to 13.8%. The total num-

ber of abstracts in the datasets was as follows: Psoriasis(4422), Lung Cancer(12769),

Liver Cancer(8507), Melanoma(3089) and Obesity(5187). In comparison, our datasets

were limited with Clinical having 2132 documents (2.4% inclusion) and HRQOL having

257 documents (8.1% inclusion).

In Popoff et al. (2020), after 1:1 downsampling, the SVM model (with hypertuning) was

found to be the best fitting model having a sensitivity of 100% in 3 of the 5 datasets. In

comparison, Naive Bayes model performed better than SVM in our methodology having

100% sensitivity in both the datasets. Figure 4.21 is a snapshot from Popoff et al. (2020)

(Figure 2, Page 6) displaying the statistics related to the methodology and metrics used.
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Figure 4.21: Automated SLR Performance analysis from Popoff et al. (2020)

In comparison with Figure 4.19 and Figure 4.20 of our analysis, we infer that even

though the most optimal models were different, a similar level of sensitivity was achieved

in both the analyses. Although, as can be inferred from Table 3 (Page 7) in Popoff et al.

(2020) and Table 4.6 we can conclude that the precision levels are much better in Popoff

et al. (2020) ranging from 10.84% to 20.76% across the 5 datasets. In comparison, preci-

sion in our analysis for the clinical dataset does not exceed 6%.

Table 4.6: Precision Metric of all models for Clinical Dataset

Model Precision

Logistic Regression 0.045

SVM 0.057

Naive Bayes 0.051

Bagged CART 0.028
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4.5 Limitations

As depicted in the Sections 4.4 and 4.5, while we were able to get high sensitivity in

our analysis for the automated selection of documents for a systematic review process in

the pharmaceutical domain, our methodology still has certain limitations. Some of these

limitations are mentioned below.

4.5.1 Precision

While we were able to get high sensitivity, as expected precision did not exceed 6% (0.06)

in our analysis. Table 4.6 gives an overview of the precision of the different models used

in our analysis for the clinical dataset.

This was expected in our methodology since we are generating text features from a limited

amount of documents in both our dataset as depicted in table 3.3 and 3.4. Ideally we

would have wanted to achieve a precision of more than 30%, so as to ensure that the false

inclusions (false positives) are also less.

4.5.2 Limited Dataset

The dataset that we used had a limited amount of documents for our training and testing

data as displayed in Table 3.7 and Table 3.8. We believe a more comprehensive analysis

could have been performed if we had a larger dataset pertaining to the Systematic Liter-

ature review that was performed.

As is expected in a systematic review process, the dataset was extremely unbalanced

for inclusions. We were able to use downsampling to balance it, but it is possible that

some relevant information might have been lost in the documents that were not included

in the training set. This can also have impacted the classification accuracy of different

models.

4.5.3 Reusability of trained models in different SLR

Reusability of our trained models is another factor in which our analysis has limitations.

Since every new Systematic Review generates a new set of documents(using keywords

search in databases such as PubMed), a new set of features would also need to be gener-

ated using the new corpus of documents.
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Hence, a trained model on one systematic literature review is not expected to perform

efficiently to predict documents pertaining to a different kind of systematic review. This is

another limitation in just using text mining techniques for feature extraction for System-

atic Reviews and might require certain alterations to make the strategy reusable across

the pharmaceutical domain.

4.6 Security and Privacy Concerns

As mentioned in the previous chapter, since the datasets used were collated using pub-

licly available databases such as PubMED, there are no security concerns related to our

analysis. Also, the database used had no user’s information and just publicly available

pharmaceutical information, our analysis doesn’t have any privacy implications as well.
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Chapter 5

Conclusions & Future Work

5.1 Conclusion

This dissertation explored the concept of performing automated study selection for Sys-

tematic Literature Review using text mining techniques and machine learning models.

While there are also similar works implemented for performing automated systematic

literature review (Popoff et al. (2020)), we evaluated the feasibility of doing so on two

datasets in a pharmaceutical context.

Abstract of each document was processed and tokenized prior to performing any text

mining operations to ensure the best set of words to be considered as features. Since,

both the datasets varied extremely as to corpus count, Training and Test data were split

differently for Clinical and HRQOL (90%/10% for Clinical and 75% and 25% for HRQOL)

to ensure that appropriate volume of data was present for training and generating features.

It is also important to observe that different strategies are used while generating the fea-

tures primarily TF-IDF due to the difference in the corpus strength of the two datasets.

Using features having weights closer to the variance helped improve the efficiency of our

classification models for Clinical Dataset while features having the maximum weights

worked much better for the subsequently less exhaustive HRQOL dataset. The notion

of only using text features with maximum weight for classification did seem getting less

significant as the corpus gets more exhaustive and the weights of the same set of words

increase exponentially.

We also observed that downsampling was very effective in handling an extremely un-

balanced dataset where the number of inclusions is very less as compared to the number
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of exclusions such as the Clinical Training Dataset (47:1871). While, there is an argument

that important information might get lost due to significantly less training data, we can

infer that the methodology using a random downsampling strategy should definitely be

explored in the domain of text classification in a similar unbalanced scenario.

While most of our research suggested that SVM model is extremely prominent in the

domain of text classification, we found Naive Bayes (Gaussian) to be the most accurate

model in our analysis, achieving a sensitivity of 100% predicting 4/4 and 5/5 relevant

documents in Clinical and HRQOL datasets respectively. As per our observations, Naive

Bayes is a prominent modelling strategy and should definitely be considered for analysis

in the text classification domain.

In comparison with similar work in the medical domain (Popoff et al. (2020)), the analysis

was found to be similar but the best fitting model was different. SVM (with hyperpa-

rameters settings and 1:1 downsampling) was found to perform the best in their analysis

achieving a sensitivity of 100% in 3 out of 5 datasets, whereas in our case Naive Bayes

performed much better. We would also like to highlight that the datasets used in their

analysis were much more exhaustive than the ones used in our methodology. Also, Preci-

sion evaluated in Popoff et al. (2020) is much better as compared to our analysis.

Considering both our analysis and the one depicted in Popoff et al. (2020), we can conclude

that the usage of text mining and machine learning techniques for Systematic Literature

Review does seem a promising strategy and should be explored. Even if a larger section

of documents are recommended as compared to the manual Systematic Literature Review

process, as long as all the relevant documents are present, the methodology can help ex-

pedite the overall process.

But one of the major hindrances as mentioned in Section 4.5.3 lies in the reusability

of the trained model. Both our analysis and the one in Popoff et al. (2020) are us-

ing different sets of features as per different datasets and then classifying the test data

documents. Reusing a set of features or models trained for a particular dataset in the

systematic review of another dataset is not expected to be extremely efficient. To effec-

tively use these strategies to expedite the Systematic review process, we would need an

exhaustive methodology trained over a huge volume of corpus, that keeps track of the

relevant set of documents for the keywords used to generate the same set of documents

and use it to predict the documents for a new set of keywords.
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5.2 Future Work

As mentioned in the previous section, while the strategy to use machine learning strategies

in the Systematic Literature review does look promising, there is still a significant room

for growth. There are two major areas which can be improved namely feature genera-

tion(including dataset related issues) and reusability. We list certain key aspects which

can be used or improved upon below in the same domain.

5.2.1 Using Recursive Feature Elimination (RFE) with TF-IDF

As observed in our methodology, while we used TF-IDF to generate the features, the

methodology differed in selection of features based on weights depending on the dataset.

Ideally, a common feature generation strategy should be used to perform the analysis.

Recursive Feature Elimination (Nafis and Awang (2021), Youn and Jeong (2009)) with

TF-IDF provides a much more scalable alternative where an ideal document matrix is

generated by iteratively first filtering features that have total weights less than the variance

of the document matrix and then recomputing the document matrix again. This strategy

could be used in any dataset to generate an optimal set of features with the maximum

accuracy and make the analysis much more scalable.

5.2.2 Using Doc2Vec for feature generation

Another feature generation strategy that can be evaluated is the Doc2Vec Le and Mikolov

(2014) modelling. In this strategy, neural networks are used to generate vector represen-

tations of documents and by extension for sentences included in them. Every document

is represented by a dense vector which is used for predictions. An optimal set of features

could be computed by using the particular dataset and hence a common process will be

followed for the feature generation aspect of the analysis.

5.2.3 Exhaustive Dataset to improve precision

The Clinical dataset(document count: 2132) and HRQOL dataset(document count: 257)

used in our analysis were fairly limited. Even though we were able to achieve an optimal

Sensitivity level, on the precision front we could not exceed 6%. This meant a significant

amount of documents were predicted as inclusions even though they were not. While it is

not a major metric for our analysis as discussed in section 3.3.4, there is a definite room

for improvement here which can be achieved by having a much larger feature set created

from a much more exhaustive dataset.
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5.2.4 Pool based Active Learning

Pool based Active learning (Tong and Koller (2001)) is an optimal unsupervised learning

strategy that can be considered to improve reusability. The three key components of the

active learner used in this strategy are classifier, labelled dataset and a query function.

A classifier is first trained on a particular amount of data using the labelled dataset. The

query function then evaluates the instances that are to be used for the next query. After

each query, the active learner returns a classifier pertaining to the query. This process

can help track the relevant documents based on the keywords(query) in our analysis and

thus help in reusing the same model in different Systematic Literature Reviews.
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Appendix

Table 1: SLR strategy for Clinical Dataset

Criteria Inclusion Exclusion
Population Patients with relapsed or refractory B-cell ALL up to 25 years of age, Patients aged >25 years of age

any sex, any ethnicity Treatment näıve patients

Patients with T-cell ALL
tervention

Tisagenlecleucel used as monotherapy

CD19 CAR T-cell therapy used in combination therapy

Clofarabine

Inotuzumab
Comparator Blinatumomab (with or without SCT)

Standard of care not otherwise defined

FLA-IDA (fludarabine, cytarabine, idarubicin) (with or without SCT)

SCT (salvage regimen not specified)

Placebo

Any of the included interventions
Outcome Primary outcomes: Response rates:

Survival outcomes: Objective response rate

Overall survival Duration of response

Progression-free survival Complete response

Event-free survival Partial response

Leukaemia-free survival

Data extracted, but not an outcome if study only reported on these: Pharmacokinetic/pharmacodynamic outcomes

HRQOL Social outcomes

AEs

Study type

Prospective randomised controlled trials Single-centre trials

Phase II non-randomised or uncontrolled trials Retrospective studies

Prospective observational studies Reviews

Patient registries Letters

Comments

Editorials

Case studies/reports

Narrative publications

Biomarker/prognostic studies

Conference abstracts without full text

Expanded access programmes

Indirect treatment comparisons
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Table 2: SLR strategy for HRQOL dataset

Criteria Inclusion Exclusion

Population
Patients with relapsed or refractory ALL up to 25 years of age,

Treatment näıve patients
any sex, any ethnicity

Intervention Tisagenlecleucel

Comparator

Blinatumomab (with or without SCT)

Not licensed in Europe

FLA-IDA (fludarabine, cytarabine,

idarubicin) (with or without SCT)

Any licensed therapy in Europe (for R/R ALL)

Placebo

Any of the included interventions

Outcome

Outcomes were required to be reported as a utility value; a format that allowed use as an input parameter in the bespoke cost-effectiveness model

1. Health-state utility values for event-free survival and progressed disease

2. Health-state utility values associated with long-term survival

3. Disutility values associated with treatment and associated administration or hospitalisation

4. Disutility values associated with short-term adverse events of treatment (less than eight weeks, as per the EPAR of tisagenlecleucel (20))

5. Disutility values associated with long-term (greater than eight weeks) adverse events of treatment

6. Disutility values associated with alloSCT (autoSCT also considered)

Study type Any study providing the required outcome was included
case studies

studies providing data on a single patient
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