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Nowadays, one-third of the world’s population lives in Common Law systems mixed with
Civil Law, including Ireland. Common Law is characterised by repeated references to
decisional precedents that eventually produce universal, agreed-upon laws. This research
aims to apply the knowledge graph to the Ireland legal field to optimise the current
case search experience of public platforms. According to the neural citation, a system
that recommends highly relevant precedents combines knowledge extraction, knowledge
integration and a recommendation algorithm to realise the vision. The project uses the
official Irish service website courts.ie as the data source, collects and processes semi-
structured and unstructured data through crawlers and natural language techniques, and
enriches the data content with third-party databases to achieve ontology-based design
for knowledge graph construction. MetaGraph2Vec performs graph embedding of the
knowledge graph for use in downstream recommendation tasks. The Latent Dirichlet
Allocation (LDA) model performs the topic modelling task to claim the labels required
for MetaGraph2Vec training. The system is evaluated to achieve good recommendation
results, with minor ontological defects, 72% macro-f1 scores and 48.15% 48.15% system
validity (≫ probability of random recommendation: 5.29%). The contribution of the
work can be concluded as follows: first, a small Irish Court Case Dataset about ‘Justice’.
Second, An ontology design and a knowledge graph compatible with the dataset. Third, a
system that recommends relevant precedents/statutes. The whole Github repository can
be found at https://github.com/kongkongYuki/YuXin, including video demonstrations
of the system.

https://github.com/kongkongYuki/YuXin
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Chapter 1

Introduction

This chapter will provide a general overview of the research. Background Section(1.1)

corroborates that our motivation raised in Motivation Section(1.2) are realistic and rea-

sonable, and thus further illustrate the value of our research objectives in Research Ob-

jectives Section(1.3). The methodology’s outline structure and description are illustrated

in Research Methodology Section(1.4). Expected Contributions are listed in Section 1.5.

The last section(1.6) is a synopsis of the whole dissertation.

1.1 Background

1.1.1 Law in Ireland

Common Law, also known as judge-made law, is the body of law created by judges and

similar quasi-judicial tribunals as stated in written opinions[9]. It is characterized by Case

Law, i.e., repeated references to decisional precedents (precedent) that eventually produce

universal, agreed-upon laws (customary rules) similar to moral concepts in general. One-

third of the world’s population lives in common law jurisdictions or systems mixed with

civil law, including Ireland[18].

The Constitution of Ireland, which was enacted in 1937, is a written constitution of Ire-

land. The Constitution is the fundamental Law of the State. Stature Law comprises bills

passed by the Oireachtas and signed into law by the president. Common Law is originally

developed from courts’ decisions based on traditional custom and precedent. It establishes

the principles other judges follow in other cases. The courts’ decisions have given sub-

stance to many constitutional rights. For example, the courts have held that people have

to protect others who are likely to be affected by their actions, allowing people who have

been injured to sue whoever is responsible for the injury caused. European Law is made

of treaties, decisions of the European courts, and a series of other provisions, including
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regulations and directives. It has priority over Irish national law. International Law is

the treaties and agreements between different countries, which an act of the Oireachtas

should implement[30].

Common-law legal systems attach importance to deciding cases according to consistent

principles to ensure similar facts will lead to predictable outcomes. The principle by which

judges are bound to precedents is stare decisis. The Irish courts follow the doctrine of

stare decisis[9] to apply clear precedents set by higher courts and courts of co-ordinate

jurisdiction.

1.1.2 Mainstream search platform

The common law system relies heavily on precedents, which can be concluded from Section

1.1.1. Therefore, how to appropriately quote citations will be the daily routine of legal

staff. Legal practitioners use specialized case search platforms to find the relevant legal

basis. The authors surveyed the current public mainstream Irish case law database as

follows:

Courts Service: The Courts Service is the body responsible for administering the courts

and supporting the judiciary in Ireland. It is an independent State Agency estab-

lished under the Courts Service Act 1998[29]. Their official website has a case search

function, and the interface is shown as Figure 1.1.

Figure 1.1: Court Service
When using the filter option ”Neural Citation”, the results presented cases with the
number ”IECA 123” over the years. The platform is unique in that it offers term

matching for text content.
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IRLII (Irish Legal Information Initiative): IRLII, hosted by UCC School of Law

and sponsored by the Arthur Cox Foundation, is the Irish hub of the global Free

Access to Law Movement (FALM). FALM is committed to providing legal decisions

to all people on a non-profit basis[16]. The interface of IRLII is shown as Figure

1.2.

Figure 1.2: IRLII
When using the filter option ”Neural Citation”, the results presented cases with the
number ”IECA 123” over the years. The platform is unique in that it summarizes the

keywords for each case and provides keyword matching.

BAILII (British and Irish Legal Information Institute): BAILII, hosted by the In-

stitute of Advanced Legal Studies, London and the Law Faculty, University College

Cork, provides free access to the most comprehensive set of British and Irish primary

legal materials. The interface of BAILII is shown as Figure 1.3.

It can be said that the mainstream free platform for legal text retrieval is based on

keyword matching and tag filtering.

1.2 Motivation

The law permeates all aspects of people’s lives, even if people are often unaware of it.

However, the law continues to be a highly specialized discipline. Although countries

provide legal aid services to their citizens to help them defend their rights, these legal aid

services usually have to meet specific requirements. For example, the Legal Aid Board

3



Figure 1.3: BAILII
The platform offers a rich set of search terms and rules. The platform has the richest
material but does not include cases from the ”Court of Appeal” established in Ireland

on October 28, 2014.

only provides legal aid and advice to Irish people whose financial situation must fall below

certain limits and whose case must be on the merits.[15].

Ireland is a common-law country and thus relies heavily on legal precedents to make a

judgment. Legal precedents are essential for all judicial workers since they have to cite

them as a basis for a judgment. Also, for citizens who do not know the law, it is necessary

but challenging to have a brief understanding of their lawsuits. In most cases, blind as a

bat, they must seek the help of an attorney who takes full charge of their cases.

Existing solutions are based on information retrieval techniques, which means people

have to use specialized terminology as the term and plenty of manual screening to find

the proper relevant cases. This process requires the expertise of lawyers to understand

the lawsuits, mine for the most appropriate search keywords, and compare the lawsuit

and the candidate sets. It is a very rigid search that usually takes considerable time and

effort from legal practitioners and is particularly unfriendly to non-legal professionals.

Although some fee-based platforms have compelling features, such as JustisOne[34] and

Lexis[20], they target law firms and university law departments as their customers and

profit from their services. The application of the law, an essential means of self-protection

for people, remains in the hands of lawyers and does not reach the masses. People have

difficulty retrieving information to get easy and timely advice for their situations.

This research tries to simplify the search process for relevant cases and provide a lower

threshold for ordinary people to be informed of their cases. Therefore, the motivation of
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the research is to apply the knowledge graph to the legal field to optimize the current

case search experience of public platforms.

1.3 Research Objectives

Regarding the word ’optimize’ in the motivation mentioned above, a system will be created

to recommend highly relevant precedents based on neural citations, which is our research

objective. The target system can be divided into three modules to achieve the final

recommendations, knowledge extraction to collect the data, knowledge integration to

build the graph and recommendation algorithm to provide case feedback. Therefore, the

research has the following three sub-objectives under this system:

• Relation and attribute extraction from semi-structured and unstructured data.

• Establish and evaluate a knowledge graph based on ontology design.

• Leverage the graph embedding model to recommend precedents.

1.4 Research Methodology

The entire three modules will form a pipeline as a whole. Each module applies different

techniques, languages, models, tools, data formats, and protocol standards.

Knowledge extraction: Web crawler techniques and Natural Languages Processing(NLP)

techniques are used in the knowledge extraction module to extract relations and at-

tributes from semi-structured and unstructured data. Data is saved in tabular form

in this phase.

Knowledge integration: Protégé tool in Web Ontology Language(OWL) and R2RML

tool in Resource Description Framework(RDF) with Turtle language are used in

ontology construction. Data is saved in GraphDB in this phase. SPARQL, an RDF

query language, supports basic data manipulation.

Recommendation algorithm: The latent Dirichlet allocation model is used for dataset

labelling, so the MetaGraph2Vec model can be trained on the dataset to generate

graph embedding with cosine similarity as a recommendation algorithm.
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1.5 Expected Contribution

According to Section 1.3, our three sub-objectives show a cascading relationship with

each module corresponding to a phased output to achieve our final recommendation goal.

Therefore this research will have three contributions as follows:

1. A small Irish Court Case Dataset about ’Justice’.

2. An ontology design and a knowledge graph compatible with the dataset.

3. A system that recommends relevant precedents/statutes.

Moreover, the final evaluation shows that the system can generate appropriate recom-

mendations in the legal field with promising prospects.

1.6 Outline of Dissertation

The structure of the dissertation is as follows: chapter 2 will review the technical back-

ground and closely related projects, listing the techniques covered in this paper and the

literature referenced. Chapter 3 discusses the design of the system and ontology, includ-

ing the further elaboration of the research methodology and design choices employed in

creating the ontology. Chapter 4 discusses the implementation of the whole system, de-

tailing the steps and codes taken to build up the automation pipeline. Chapter 5 evaluates

the completed system at three levels: ontology, model, and system. Finally, chapter 6

concludes the research and discusses the project’s shortcomings and future work.
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Chapter 2

State of the Art

This chapter presents the situation in which the research is located from a technical and

project perspective. Section 2.1 provides information on the technologies and tools used.

Section 2.2 lists the projects that are closely related to this research topic and provides

a short description of each project. Section 2.3 summarizes the background and project

part and compares those projects to this research.

2.1 Background

2.1.1 Web crawler

Crawling is the process of automatically exploring web applications. Web crawlers, also

called spiders, are the software that resides on the host and programs that get web pages

from the Web by following hyperlinks. The web crawler aims to discover the web pages of

a web application by navigating through the application and achieving the Web accord-

ing to some strategies. By simulating user interactions[23] like sending GET, POST and

HEAD instructions that follow the HTTP protocol, web crawl receives the document, in-

cluding HTML and XML documents and other multimedia information from web servers.

Technically, Web crawlers are the tools for data acquisition.

Google Chrome Driver Google Chrome is a web browser, and Chrome Driver is a

tool for automation testing of web applications. It provides functions such as web

browsing, user input, and JavaScript execution. The primary purpose of the Chrome

Driver is to launch Google Chrome.

Selenium The Selenium Project[28], responsible for Selenium, is a range of tools and

libraries that enable and support automation for web browsers. The Selenium suite
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of components works across different browsers, platforms, and programming lan-

guages to emulate user interaction with browsers without the need to learn a test

scripting language.

Beautiful Soup Beautiful Soup is a Python library for web scraping, extracting data

from HTML and XML files. It works with parsers to provide idiomatic methods for

navigating, searching, and modifying parse trees from page source code and can be

used to extract data in a hierarchical, more readable manner.

2.1.2 Natural Language Processing

Natural Language Processing (NLP) includes a range of computational techniques for

representing and automatically analyzing human language. The importance of NLP is

that over 20 billion web pages in the WWW can be used as a vast data resource from

which meaningful information can be found simply through NLP. The NLP field focuses

on machine translation, information retrieval, information extraction, question answering,

text summarization, topic modelling, opinion mining, and other areas. The current ap-

proaches to NLP are based on the syntactic representation of text, i.e., relying on the word

occurrence frequencies, because semantics is considered a more challenging problem[6].

Information Extraction

Information extraction systems input natural language text and produce structured in-

formation. There are various sub-tasks of IE, such as Named Entity Recognition, Coref-

erence Resolution, Named Entity Linking, Relation Extraction, and Knowledge Base

reasoning.[31].

Named Entity Recognition Named Entity Recognition (NER) is the problem of locat-

ing and classifying important nouns and proper names in a text[24]. For example, in

the following sentence, bolded named entities hold critical information and are help-

ful for language processing applications: ”JUDGMENT of Ms. Justice Donnelly

delivered on the 28th day of October 2021”.

Blackstone [13] Blackstone is a spaCy model and library for long-form, unstructured

legal text from ICLR/D, the Institute of Law Reporting Research Laboratory for

England and Wales. The Named-Entity Recogniser(NER) component of the Black-

stone model has been trained to detect the following entity types:
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Figure 2.1: General Information Extraction Architecture[7]

Ent Name Examples
CASENAME Case names e.g. Smith v Jones, In re

Jones, In Jones’ case
CITATION Citations (unique identifiers for re-

ported and unreported cases)
e.g. (2002) 2 Cr App R 123

INSTRUMENT Written legal instruments e.g. Theft Act 1968, Euro-
pean Convention on Human
Rights, CPR

PROVISION Unit within a written legal instrument e.g. section 1, art 2(3)
COURT Court or tribunal e.g. Court of Appeal, Upper

Tribunal
JUDGE References to judges e.g. Eady J, Lord Bingham

of Cornhill

Table 2.1: Blackstone NER: Entity Types and Examples[13]
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Topic Modeling

Topic models work on connecting documents with similar patterns through the patterns

of word usage. Documents can be considered as mixtures of topics, where a topic is a

probability distribution over words. Topic models rely on the bag-of-words assumption

and ignore information from the ordering of words[2].

Latent Dirichlet allocation (LDA) Latent Dirichlet Allocation (LDA) is based on

statistics (Bayesian) and is a widely used text mining algorithm that belongs to

generative and unsupervised topic models in which words are collected into docu-

ments. The occurrence of each word is attributed to a topic in the document[2].

2.1.3 Knowledge Graph

Ontology

Ontologies are knowledge bases of concepts and their relations, illustrated in a formal

logic-based knowledge representation language. Ontologies are the tools for data integra-

tion, sharing and discovery.

Web Ontology Language(OWL) [37] OWL became a W3C standard in 2004, and a

revised version was created in 2012. OWL is based on description logic, a sublan-

guage based on first-order predicate logic that only uses singular and dual predicates

and restricts the use of quantifiers, and is designed in such a way that the logical

deductive reasoning of the language is decidable[12].

Protégé [27] Protégé is an ontology editor and a knowledge management system. It is

widely popular and used worldwide as an ontology editor.

Semantic Web

The Semantic Web is considered an enhancement of the World Wide Web with machine-

understandable information and services that use that information. Machine-understandable

information is achieved by giving the data expressive metadata. In the Semantic Web,

metadata is usually in the form of ontologies that allow reasoning over the meaning of the

data[12]. In 2012 Google introduced the concept of the term Knowledge Graph, which is

primarily a new framing of ideas coming directly out of the Semantic Web field[12]. The

W3C standards formed around RDF, OWL and SPARQL establish technical interchange

formats that are unified at the syntactic and semantic levels (to some extent). The appli-

cation of knowledge graphs aims to establish effective methods for data sharing, discovery,
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integration and reuse.

Resource Description Framework(RDF) [38] RDF became a W3C standard in 2004

and was revised in 2014. RDF is a syntax for expressing directed graphs, labelled

type graphs by using OWL to specify ontologies of types and their relations, which

are then used as types in RDF graphs and relations as edges, more or less compatible

with OWL. From this point of view, OWL ontologies can be used as schemas for

RDF graphs[12].

R2RML [35] R2RML became a W3C standard in 2010 and was revised in 2012. R2RMl

is a language expressing custom mappings from relational databases to RDF datasets.

This mapping provides the ability to view existing relational data in the RDF data

model to map structural and target vocabulary expressions chosen by the author.

R2RML mappings themselves are RDF graphs, written down in Turtle syntax.

SPARQL [36] SPARQL is the W3C’s RDF query language standard for adding, deleting

and retrieving data from RDF triplet stores/graph databases. SPARQL queries can

not only match the subject-predicate-object triples, but can also use mathemati-

cal operations and functions to create filter conditions and new variable bindings.

Results can be sorted, grouped, and these groups can be aggregated.

GraphDB [25] GraphDB is a semantic graph database following W3C Standards. Se-

mantic graph databases, also called RDF triplestores, use graph structures for se-

mantic queries to represent and store data with nodes, edges, and attributes. It is

easy to visualize relationships in GraphDB, which is very useful for large amounts

of interconnected data.

2.1.4 Graph Embedding

Most graph methods suffer the high computation and space cost issues, while graph

embedding can transform the graph data (nodes, edges and features) into a low dimen-

sional space in which graph structure and information are maximally preserved. The

input of graph embedding varies in different scenarios according to the types of graphs

(homogeneous graph or heterogeneous graph). The output of graph embedding is a low-

dimensional vector representing a part of the graph(or a whole graph). By representing a

graph as a low dimensional vector, other algorithms can then be computed efficiently on

the graph. [5].
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(a) Meta Structure (b) MetaGraph2Vec Algorithm

Figure 2.2: MetaGraph2Vec Model

Meta Structure [14] Meta Structure is a directed acyclic graph of object types with

edge types connecting in between to measure the proximity between objects. The

advantage of the meta structure is that it can describe the complex relationship

between two heterogeneous information networks (HINs) like two papers share the

same topics and authors. An example of Meta Structure is shown in Figure 2.2a,

where it integrates two paths as a whole to represent the schema more comprehen-

sively.

MetaGraph2Vec Algorithm [41] In the MetaGraph2Vec algorithm, the deep walk al-

gorithm randomly generates paths from one node to another at a certain length.

In this way, the model transforms the graph into the combination of the selected

meta paths, each of which has a similar structure where nodes are treated as words

in a sentence. Therefore, we can apply the Skip-gram algorithm, a text embedding

model originating from Word2Vec. In Figure 2.2b, line 1 generates a set of meta

graph-guided random walks. Line 2 does the embedding work. The code block from

4 to 8 is a stochastic gradient descent to learn the hyperparameters.

In brief,MetaGraph2Vec=Meta Structure (data structure) +RandomWalk (cre-

ate random paths which is similar to sentences)+ Skip-gram(embedding model origi-

nated from Word2Vec).

2.2 Closely-Related Projects

Each of the projects surveyed in this section are given a number, so that

these projects can be referenced more easily in subsequent chapters of the

dissertation.
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2.2.1 Ontology Design

1. Using Mapping Languages for Building Legal Knowledge Graphs from XML files[17]:

Figure 2.3: Related paper 1: Semantic model for legal documents

This paper presents the experience of building RDF knowledge graphs for an in-

dustrial use case in the legal domain. The semantic model is shown as Figure

2.3 with fragments like manifestation, content, keyword, type and concept. The

authors reuse existing ontologies, including Functional Requirements for Biblio-

graphic Records (FRBR), the Simple Knowledge Organization System (SKOS) and

the Dublin Core (DC) terms ontologies and compare various mapping engines (

XSPARQL, SPARQL-Generate, RML-Mapper, CARML).

2. A legal case OWL ontology with an instantiation of Popov v. Hayashi[40]:

(a) Case (b) Decided Case

Figure 2.4: Related paper 2: Ontological representation of legal cases
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The paper provides an OWL ontology for the legal case Popov v. Hayashi. The

ontological design of this paper is comprehensive and professional. The authors

provide a detailed reading of the judgement, with different types of cases possessing

different ontological designs and complete classification of testimony, evidence, and

legal texts. The ontology of this paper is excellently designed, but its excessive gran-

ularity makes it challenging to form automatic pipelines for general use in multiple

cases.

3. An Ontological Chinese Legal Consultation System[42]:

(a) Chinese statutes ontology (b) Judicial cases ontology

This paper constructed a detailed statutes ontology and a case ontology, respectively

and then performed experiments using emotional damage compensation as an ex-

ample by combining genetic algorithm and k nearest neighbor approaches to give

similarity of the cases and statutes, respectively. Since China is a civil law system,

the user input will first enter into a word segmentation system, which means that

the system’s core is based on the similarity of words.

2.2.2 Recommendation

4. Extracted Summary Based Recommendation System for Indian Legal Documents[33]:

This paper wants to prove that a concise, summarized version of the case is a non-

trivial task, so the authors use only the extracted summary of legal documents to

retrieve similar documents. Doc2Vec embeddings are used to transform articles

into word vectors, and Support Vector Machines are used for classification tasks.

The results show a better F1-Score, and the time and space complexity is reduced

compared to the entire documents.

14



5. Text-guided Legal Knowledge Graph Reasoning[21]:

This paper aims to predict the related legal provisions of affairs through a knowledge

graph completion task and a text-guided graph reasoning approach. The authors

use an instance encoder with BERT and an MLP layer to reduce the dimension

of features; employ GNN to learn explicit relational knowledge; utilize TransE,

DistMult and SimplE as triple scores functions.

6. Quick Check: A Legal Research Recommendation System[32]:

This paper aims to design a system that extracts the legal arguments from a user’s

brief and recommends highly relevant case law opinions. The system leverages a

multitude of case discovery pathways and ranking models trained over a considerable

annotated training set to extract the most relevant cases to a given legal issue.

The technical approach is search-engine-based candidate discovery + citation-based

candidate discovery with two ranking SVM models.

7. Citation Recommendation with a Content-Sensitive DeepWalk-based Approach[10]:

This paper calculates similarities between the target and candidate papers at the

node content level, selecting an initial seed set of papers. At the citation network

structure level, this paper exploits the citation relationships between papers to study

the latent representation of the scientific papers based on a deep natural language

method, Deep Walk. These two levels are executed in order.

8. Scientific Article Recommendation by using Distributed Representations of Text

and Graph[11]:

This paper proposes a model which combines network embeddings with the seman-

tic embeddings of the text using CCA. CCA is a popular method to combine two

different modalities by projecting both in a common representation space to maxi-

mize the correlation between both modalities in the common space. Text similarity

methods are TF- IDF and BM25 ranking-based methods on paper’s content. Repre-

sentation learning methods(network embeddings) are DeepWalk(graph), LSI, LDA,

word2vec, doc2vec (text). The authors try to find a common space for the two

areas.

9. IntelliLegalRec: An RDF Based Metadata Driven Semantically Compliant Recom-

mendation System for Socio-legal Judicial Documents[19]:

The paper model is based on topics, which rely on the Latent Dirichlet Alloca-

tion(LDA) model and treat topics as metadata. Also, the paper uses an existing

dataset to train/evaluate the recommendation model, but maps the recommenda-

tion results to the local dataset in some unknown way. The author calculates the
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similarity between METADATA from users and CLASS LABEL from datasets to

recommend documents.

2.3 Summary

Crawler technology allows this research to obtain data from official government sources

as a free agent. Natural language technology provides a solution to extract information

from judgment texts and model textual topics. Knowledge graph technology transforms

tabular data into graph data, accelerating information retrieval and enhancing informa-

tion utilization. Graph embedding technology extracts features from complex graphs and

makes it possible to calculate node similarity effectively.

Project 1 provides a comparison of mapping tools and a reference to available libraries.

Project 2 gives a delicate reference to ontology design, leading to automation difficulties.

Project 3 references ontology design and system construction, but the problem are that

its object is a civil law case. Project 4 is not to make recommendations but to demon-

strate the improvement in results from using a summary. However, this paper’s approach

(word embedding + SVM classification) inspires the research. Project 5’s approach is

graph reasoning(BERT + GNN + TranE/DistMult/SimplE). The ontological design is

not explicitly solidified but based on the features extracted and learned by BERT and

GNN. The idea of the system is very similar but different from the research in terms of

information extraction and feature processing. Project 6 utilizes a two-layer SVM model

for recommendations, incorporating information retrieval techniques. The second layer

of Project 7 has a homogeneous rather than heterogeneous graph of citation relations,

and the first layer directly calculates the similarity of contents rather than extracting

information as in this research. Project 8 combines two modalities(graph and text) by

projecting both in a common representation space to calculate similarity. The techniques

used in Project 9 are very similar to this research but are used differently, and the system

architecture is different.

The research differs from closely related projects in the following areas:

• Different ontology objects and design: Irish cases focused on citation

– Facts of the case (Project 2)

– Legal provisions (Project 3)

• Different way to recommend: Graph embedding on the heterogeneous graph

– Word Embedding + SVM on text information (Project 4, 6)
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– DeepWalk on homogeneity graph (Project 7)

– GA–KNN algorithm on text information (Project 3, 5)

The granularity of the research’s ontology design is not as refined but more about application-

level feasibility. Highly granular ontologies are usually modelled from one or two individual

cases, while the research’s model needs to be formed from a broader range of cases. As for

the recommendation, most of them use word embedding rather than graph embedding.

Those using graph structure tend to be homogeneous graphs; there is only one node type

and one relationship type in the graph. The research takes case, judge, jurisdiction, and

citation into account.
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Chapter 3

Design

This chapter includes system design and ontology design. System Design Section(3.1)

is a further elaboration of the research methodology(Section 1.4), spelling out in detail

the purpose, functions, steps and data input of each module. Ontology Design Sec-

tion(3.2) emphasizes the principles that the ontology needs to focus on(3.2.1), presents 10

Competency Questions(3.2.2), gives the process of ontology design and final draft details

description(3.2.3).

3.1 System Design

3.1.1 Overview of the Pipeline

Figure 3.1: System Automation Pipeline Overview

The whole system can be described as an automation pipeline as Figure 3.1. In brief,

three sub-modules (knowledge extraction, knowledge integration, and recommendation

algorithm) undertake the tasks of collecting and processing the data, establishing the
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dataset with labels and links, constructing the ontology by mapping files, embedding the

knowledge graph and giving recommendations based on similarity scores. The user input is

the neutral citation (official unique id of each case). The algorithm gives the recommended

cases and statutes list, and related information is retrieved from the database as system

output.

3.1.2 Knowledge Extraction

The knowledge extraction module is responsible for extracting entity, relation, and at-

tribute from semi-structured and unstructured data to generate structured data for fur-

ther processing. This module is mainly used to create repositories/datasets for the whole

system.

The data source is courts.ie[29], the official website of the Irish law service as stated in

Section 1.1.2. Since the official data interface is not provided and no existing data sets

are available, the author has to gather the data through websites or platforms.

Most of the semi-structured data are embedded in the web page. Thus, crawler tech-

nology will extract web content, including case lists, case links, case files and especially

case meta information of each case. One of the examples of semi-structured data can

be found in Figure 3.2 where one can obtain neutral citation, judge, court, date, status,

result, composition, title, which can be split into plaintiff and defendant, and case link

information.

Figure 3.2: Semi-structured Date Example
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Some cases are available as downloadable Docx files. The case content of these docu-

ments is presented in an unstructured manner, as Figure 3.3 showed. For the processing

of legal texts, natural language techniques need to be approached to extract the entities

and values, particularly reference relationships that are not available in semi-structured

data, including precedent citation and legal provisions.

Figure 3.3: Unstructured Date Example

The graph embedding model is a semi-supervised model, so labels are needed for

training to improve the model performance. This module also includes the preparation of

data labels. An unsupervised topic model will be applied to all legal texts to determine

the topic to which each case belongs.
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3.1.3 Knowledge Integration

The knowledge integration module needs to split structured data(data processing), align

our dataset with third-party data(data alignment), and then merge third-party informa-

tion into our dataset(data integration). The final output of the module is fed into ontology

mapping files. This module lays the foundation for establishing a knowledge graph based

on ontology design.

The third-party database used by the authors is Wiki data, with personal profiles of

former and current Irish judges categories by jurisdiction as shown in Figure 3.4. Fur-

thermore, Electronic Irish Statute provides Book additional content on legal provisions.

All third-party information is given in the form of links.

Figure 3.4: Third Party Database Example

The mapping file will convert the data from table format to Resource Description

Framework (RDF) format, which can be imported into the graph database with the

ontology design to build a complete knowledge graph.

3.1.4 Recommendation algorithm

This module references the structural layers of Section 2.2 Project 4&6 but changes the

model used for each layer; in particular, the word embedding is changed to a graph em-
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bedding. Due to the structure of heterogeneous graphs, this module does not use the

DeepWalk model as in Project 8 but a model for heterogeneous graphs.

The core idea of the recommendation algorithm module is to transform nodes, edges and

features into vector space (a lower dimension) while maximally preserving graph struc-

ture and information. This module leverages the output of a graph embedding model to

calculate the similarity scores of nodes to give final recommended cases and statutes.

In terms of user input, the author restricts it to neutral citations, i.e., the official unique

ID of the case. User input under this restriction leads to two scenarios, one in which the

neutral citations entered by the user exist in the database and the other in which they

do not. The former will use a pre-trained model with faster feedback to give recommen-

dations, while the latter needs to reacquire case-related information to generate nodes to

join the existing knowledge graph and train the model with slow feedback. At the same

time, the case information will be updated to the database and model (knowledge up-

date). In the ideal situation, when we build up a large enough dataset, the latter schema

will be used for daily back-end batch updates, so the time spent will not be reflected in

the user’s real-time retrieval process.

The recommendation algorithm module will give a list of recommendations, combined

with other information fetched from the graph database and returned to the user as

system output.

3.2 Ontology Design

3.2.1 Design Scope and Principles

Target group: The objective is to facilitate the user search experience on existing public

platforms so that the system will target non-legal professionals more than law firms

using paid platforms.

Scope: It should also be clear that the system is only aimed at cases in Ireland. Thus,

the ontology should be designed to conform to the Irish judicial system, trial compo-

sition, case format, and other locally appropriate elements. For example, the design

will focus more on customary law referencing relationships than on the statutory

framework because of features of the Irish Common Law System.

Granularity: Ontology should be designed for non-legal professionals to understand, but

at the same time, should also take specialization and expansion into account, which

means the granularity of the ontology would be quite refined but still keep the basic

crucial information.
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Compatibility: Ontology should be reconciled with data and data type.

3.2.2 Competency Questions

Competency questions define a set of conditions that can be answerable once the ontology

has been completed and characterise the problems that the ontology can solve. Ideally,

capturing domain tasks as competency questions involves producing a set of questions

that people might wish to learn from a knowledge base.

Competency questions should be able to cover the search items provided by the exist-

ing platform like date range, jurisdiction, and judge. However, they should also embody

features specific to knowledge graphs, such as the connectivity relationships between en-

tities. Since SPARQL language has mathematical operations and a wide range of utility

functions to create filters and new variable bindings, competency questions should also

include some calculation and filtering to demonstrate enhanced search capability. In ad-

dition, the relationship between Classes and the relationship between Properties in the

ontology design should enrich the search function.

Competency questions will be used as part of the feedback survey evaluation criteria for

legal and non-legal professionals as Section 5.4.2 planned. Competency questions will be

reviewed and added to over time as feedback is gathered whilst demonstrating the initial

system to legal experts in the future.

(...) for entity, /.../ for variable placeholder, (...-...) for subclass relation-

ship, # for annotation

1. (Case) after the /certain day/. # Basic search item: Date

2. What is (Case) from (Jurisdiction)? # Basic search item: Jurisdiction

3. What is (Case) judged by (Judge)? # Basic search item:Judge

4. What are /approved/ (Case) on /Topic/?

# Intermediate search function: Entity relationship

5. Which (Judge) deals with the most cases in /Year/?

# Intermediate search function: Entity relationship

6. How many (Case) have contested? # Advanced search function: Calculation

7. What are failure rates on /Topic/? # Advanced search function: Calculation

8. The ratio of (Precedent) : (Statue) in (Case).

# Advanced search function: Calculation
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9. What is the most frequently used (Statue-Act)?

# Ontology search function: Class and sub-class

10. What (Legal Document) can support my case on /Topic/?

# Ontology search function: Class and sub-class

3.2.3 Identification of Ontology

Referring to Section 2.2.1 Project 2&3 , the author proposes the following ontology de-

sign as shown in Figure 3.5, which combines all the valuable features mentioned in the

literature.

Figure 3.5: Ontology Design Edition 1

However, due to the premise of the common law system, where the weight of legal

provisions is not as heavy as in civil law systems and the need for ubiquity and universality

of ontology for large-scale data, this version of ontology needs to be pruned and modified

even though it is a comprehensive one.

Then, the author proposes another ontology design, as shown in Figure 3.6. The on-

tology shifts attention from the hierarchical construction of legal texts to the construction

of categories of cited objects.

After branching the ontology, the authors made minor modifications to the properties

of entities and the relationships between entities based on the collected database, which
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Figure 3.6: Ontology Design Edition 2

makes it more relevant to the application scenario and application value of the system.

The data source lacks solicitor information, but the solicitor entity is retained here for

the integrity of ontology for additional information in the future.

It has 16 Classes with 33 object properties. A detailed ontology document generated

by WIDOCO[8] can be found in the project GitHub repository(https://github.com/

kongkongYuki/YuXin/blob/main/Ontology/myDocumentation/doc/index-en.html).

Classes

Among all classes, Case is the core of ontology. Three other classes(Jurisdiction, Person,

Statute) are connected to Case. The class under Jurisdiction are disjoint with each other.

{IrishAppealCourt, IrishHighCourt, IrishSupremeCourt} ⊂ Jurisdiction

{Defendant, Judge, P laintiff, Sollicitor} ⊂ Person

{Act, Convention,Directive, Instrument,Regulation} ⊂ Statue

Properties

Among all properties, there are Subordinate relationships.

{(Case)citeCase(Case), (Case)citeStatue(Statue)} ⊂ cite

{(Case)hasCaseID, (Statue)hasInstrumentID,

(Judge)hasJudgeID, (Statue)hasStatueID} ⊂ hasGraphID
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Figure 3.7: Ontology Visualization Generated by WebVowl[22]

* The Instrument in the dataset (Instrument = Statue + Year + Detail) and the In-

strument in the Class (a sub-class of Statue class) refer to different meanings, and the

meaning of ”Instrument” in ”hasInstrumentID” use the former meaning here.

Moreover, among all properties, there are several inverse pairs.

(Case)cite(Case, Statue) ↔ (Case, Statue)citedBy(Case)

(Judge)judge(Case) ↔ (Case)judgedBy(Judge)

(Jurisdiction)hasJudge(Judge) ↔ (Judge)serveAt(Jurisdiction)

3.2.4 Creation of OWL Files in Protégé

Following the design of the ontology, the outlined structure was created in Protégé and

expressed as OWL files, which are available in the project GitHub repository named

”ono.owl” (https://github.com/kongkongYuki/YuXin/blob/main/Ontology/ono.owl).
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Chapter 4

Implementation

This chapter starts from the project structure (Section4.1) and goes into the specific exe-

cution code in each file within each module (Section4.4, Section4.5, Section4.6) according

to the pipeline flowchart. Dataset Section(4.2) gives the scope and number of datasets, a

description of the format of the dataset, the respective roles of the datasets, and the merg-

ing and transformation between datasets. Ontology Section(4.3) presents the key code in

the mapping file and answers the Competency Questions raised in the last Chapter with

SPARQL queries, using the data combined with the ontology in GraphDB.

4.1 Project Structure

The codes of the project are integrated into a python project, where create repository.py

is the entrance file to create our repository and main.py is the entrance file to run the

system. The entire project structure corresponds to the pipeline chart as follows:

• Knowledge Extraction
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– create repository crawl.py: Extract information from semi-structured data.

– create repository nlp.py: Extract information from unstructured data.

– create repository topic.py: Train the LDA model from unstructured data and

classify the topic of each case.

• Knowledge Integration

– create repository link.py: Split the nested arrays in the ”Judge” and ”In-

strument” columns into other tabular tables. Then align the data from the

third-party database and link the URLs (Output file: Instrument link.csv &

Judge link.csv).

– create repository dic.py: Split the nested arrays in the ”Citation” column into

another tabular table (Output file: Citation.csv).

• Ontology Construction

– Ontology/ono.owl: Ontology design written with the help of Protégé.

– Ontology/mapping.ttl: Mapping file to transform tabular data into RDF data.

• Recommendation Algorithm

– OpenHINE Folder: Metagraoh2Vec model. What is needed is the final embed-

ding matrix stored in the TXT file (Output file: test node.txt and graph rw.txt).

– create dataset label.py: Convert the tabular data to TXT files according to

the format of model input.

– recommend.py: Calculate and rank the similarity scores.

– process input caseid.py: Processes neutral citations/cases entered by the user

that are not recorded in the database.

– execute graph query.py: Script to interact with GraphDB.

4.2 Dataset

4.2.1 Dataset for Mapping

Case - case all with topic id.csv (primary dataset)

There are 1109 cases after dropping duplicates. More than 200 have ’Justice’ in title from

Aug 11th, 2021, to July 8th 2022. Furthermore, the remains have ’Justice’ in text from
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May 10th, 2022, to July 8th 2022. Upon observation, their neutral citations are nearly

consecutive, meaning that this condition, ‘Justice in the text’, nearly encompasses all

cases during that period. This situation proves that ‘Justice’ is not a good keyword for

information retrieval, and it also means that our dataset will have a variety of topics.

The format and sample of the dataset are in Table 4.1. Composition, Instrument, and

Citation columns must be further processed and extracted into separate CSV files.

Column Technique Usage Example

Judge Crawler NA Whelan J.
Composition Crawler Ontology & Graph Whelan J.; Noonan J.; Pilkington J.

Court Crawler Ontology Court of Appeal
Date Delivered Crawler Ontology 2021-10-27
Date Uploaded Crawler Ontology 2022-02-23

Status Crawler Ontology Approved
Result Crawler Ontology Appeal Dismissed.

Neutral Citation Crawler Ontology & ID 2021 IECA 283
Title Crawler Ontology C.M. -v- Health Service Executive

Plaintiff Split Title Ontology C.M.
Defendant Split Title Ontology Health Service Executive
Case Link Crawler Ontology https://www.courts.

ie/view/judgments/

7772da48-9c1c-4765-bbb5-b9e077511613/

383d4c72-363b-4421-acfe-c911e3822eb2/

2021_IECA_283.pdf/pdf

CITATION NLP Ontology & Graph [’[1980] I.R. 251’, ’[2005] Act’,
’[1994] 1 IR 101’, ’[2006] 1 I.R. 421’,
’[2020] IESC 10’, ’[2001] 4 I.R. 113’,
’[1979] I.R. 326’, ’[2021] IECA 101’]

INSTRUMENT NLP Ontology & Graph [’EPSEN Act’, ’Disability Act’, ’Na-
tional Council for Special Educa-
tion (’, ’EPSEN Act 2004’, ’Educa-
tion Act’, ’Disability Act 2005’, ’Act
of 2004’, ’Health Acts 1947’, ’2007
Regulations’, ’2005 Act’, ’2004 Act’,
’Interpretation Act’, ’Disability Act
57’, ’Health Act’, ’s. 8 Disability
Act’]

Topic LDA Ontology & Label 3
Neutral Citation ID UUID Ontology & Graph 12062

Table 4.1: case all with topic id.csv Format and Sample
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Citation - citation.csv (secondary dataset)

In the main file, the column exists as an array. After expanding those arrays as rows and

filtering out the invalid citations, there are 4821 rows in the Citation file. The format and

sample of the dataset are in Table 4.2.

Column Sample
Neutral Citation 2021 IECA 282

Citation 2013 IESC 6
Citation ID 12671

Table 4.2: citation.csv Format and Sample

Instrument - instrument link.csv (secondary dataset)

Similarly, after expanding the Instrument column of the main file to rows of another file,

an Instrument file with more than 6000 rows was generated. The automatic extraction of

legal documents is affected by invalid data, such as the 1956 Act, so manual filtering is

required to clean up the data.

There are 3111 rows in the Instrument file at last. If the Statue exists on the Electronic

Irish Statute Book website, then add a new column called Instrument Link.

The format and sample of the dataset are in Table 4.2. The statue is the main body

of the Instrument. Instrument ID is the UUID generated by Instrument Column, while

Statue ID is by Statue.

Column Sample
Neutral Citation 2020 IEHC 344

Instrument Criminal Justice (Terrorist Offences) Act 2005
Statue Criminal Justice Act
Year 2005
Detail Terrorist Offences

Instrument Link https://www.irishstatutebook.ie/2005/

en/si/0416.html?q=Criminal+Justice+

Terrorist+Offences+Act&years=2005

Instrument ID 48537
Statue ID 64073

Table 4.3: instrument link.csv Format and Sample

Judge - judge link.csv (secondary dataset)

The extra information for Judge is from Wiki Data, where people can find the profiles of

judges. Judges’ names in Wikipedia must be formatted to correspond to the dataset for
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Column Sample
Neutral Citation 2021 IECA 282

Judge Whelan J.
Court Court of Appeal

Judge Link https://en.wikipedia.org//wiki/M%C3%

A1ire_Whelan

Judge ID 49920

Table 4.4: judge link.csv Format and Sample

linking. There are 1801 rows in the Judge file.

4.2.2 Dataset for Training

Model Input - edge.txt

There are 19460 lines with three pairs of relationships in the dataset, as listed in table

4.5, where P represents the Case, A represents the Judge, T represents the Instrument,

and C represents the Citation. The edges of a node will have different weights depending

on the relationship of the edges. Correspondingly,

• p-a: Case judgedBy Judge; a-p: Judge judge Case (1 weight).

• p-t: Case citeStatue Statue; t-p: Statue citedBy Case (3 weights).

• p-c: Case citeCase Citation; c-p: Citation citedBy Case (2 weights).

Node ID Node ID Relationship Weight

35081 49920 p-a 1
49920 35081 a-p 1
26957 29638 p-t 3
29638 26957 t-p 3
60268 7740 p-c 2
7740 60268 c-p 2

Table 4.5: Model Input Format and Sample

Label - label.txt

The file label.txt contains only two columns of data ”Case Node ID” (e.g. p35081) and

”Topic” (e.g. 9). There are 1009 lines with ten topics as training labels. The LDA model

classifies topics after training it with corpus. The amount of data under each category is

not as much but differs significantly, i.e., unbalanced data, as Figure 4.1 showed.
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Figure 4.1: Topic Distribution

4.3 Ontology

4.3.1 Mapping Tools and Files

Difficulties Statement

• How to map the nested arrays in the dataset needs to be considered.

Three mapping tools are compared in six latitudes according to Section 2.2 Project

1, where !means full support, while a (!) means partial support.

R1 R2 R3 R4 R5 R6

XSPARQL ! ! ! (!) (!) !

SPARQL-Generate ! (!) ! (!) ! !

RML-Mapper ! (!) ! ! ! !

Table 4.6: Mapping engines comparison

However, neither can solve the problem of nested data in columns, which means

it is impossible to rely on the syntax of the mapping tool itself to implement the

mapping. For this problem, the author finally adopted a roundabout solution by

splitting and downgrading the nested arrays with python (Section 4.5.2) and map-

ping the different single-dimensional tables separately. Considering that R2RML-F
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can be used for lightweight data processing, RML (R2RML) was finally chosen as

the mapping tool.

• How to deal with Case entity citing itself.

Both ‘Case’ and ‘Citation’ belong to the Case entity. That is, there are a large

number of Case entities that refer to their entity types, which is a recursive structure.

For this problem, the author completes the entity mapping of the two separately

and then links the two together via rr:IRI. Identical IRIs are considered to be the

same node.

Language and Tool

• Web Ontology Language (language) + Protégé (tool) for Ontology Construction

• R2RML(language) + GraphDB(database) for Knowledge Graph

Mapping File - mapping.ttl

The snippet below shows how to map the citation relationship between two entities. For

example, both citation entities and case entities are case classes. When mapping a citation

entity, use rr:IRI to associate it with an already defined case.

<#CitationtMapping> a rr:TriplesMap ;

rr:logicalTable [ rr:tableName "citation"] ;

rr:subjectMap [

rr:template "http://www.yuxin.com/law/Case/{CITATION}";

rr:termType rr:IRI;

rr:class ono:Case

];

rr:predicateObjectMap [

rr:predicate ono:citedBy;

rr:objectMap [

rr:template "http://www.yuxin.com/law/Case/{Neutral Citation}";

rr:termType rr:IRI;

rr:class ono:Case

]

]

.
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The model will combine the node type and number to identify a node specifically.

Moreover, the node information stored in our database must be consistent with the node

information of the model. Therefore, the original data must be processed (add prefix)

while mapping. The snippet below shows how to handle this problem with the help of

R2RML-F.

@prefix rrf: <http://kdeg.scss.tcd.ie/ns/rrf#> .

<#addPrefixT>

rrf:functionName "addprefixT" ;

rrf:functionBody """

function addprefixT(citation_id) {

return "t" + citation_id

}

""" ;

.

...

rr:predicateObjectMap [

rr:predicate ono:hasCitationID;

rr:objectMap [

rrf:functionCall [

rrf:function <#addPrefixT> ;

rrf:parameterBindings (

[ rr:column "Citation ID" ]

) ;

] ;

] ;

];

...

After running ”java -jar Tools/r2rml.jar Ontology/config.properties”, we will

get mapping.output.ttl, which will be fed into GraphDB to generate a graph. The de-

tails of mapping.output.ttl can be found in the Github repository (https://github.com/

kongkongYuki/YuXin/blob/main/Output/.mapping.output.ttl).
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Figure 4.2: Class relationships in GraphDB

4.3.2 Database Visualization

4.3.3 Competency Questions Query

The SPARQL language can perform basic information retrieval and answer specific com-

petency questions. The ontology can answer ten previously designed questions, reflecting

that the knowledge graph effectively enriches the retrieval experience. Specific query

statements will be shown in this section, while all queries need to reuse these URLs:

PREFIX ono: <http://www.yuxin.com/law/ontologies/2022/>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

In the competency questions, (...) stands for entity, /.../ stands for variable placeholder,

(...-...) stands for subclass relationship and ”...” means the content of the variable.

1. (Case) after the /certain day/ ”2022-01-01”.

select ?case ?date where {

?case a ono:Case .

?case ono:deliverDate ?date .

?case ono:hasLink ?link.

FILTER (?date > "2022-01-01"^^xsd:date)

}
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2. What is (Case) from (Jurisdiction)”High Court”?

select ?case where {

?case a ono:Case .

?case ono:jurisdiction ?court .

?court rdfs:label ?court_name .

FILTER (?court_name = "High Court")

}

3. What is (Case) judged by (Judge)”Hyland J.”?

select ?case where {

?case a ono:Case .

?judge ono:judge ?case .

?judge rdfs:label ?judge_name .

FILTER (?judge_name = "Hyland J.")

}

4. What are /approved/”Approved” (Case) on /Topic/”1”?

select ?case where {

?case a ono:Case .

?case ono:topic ?topic .

?case ono:status ?status.

FILTER (?topic = "1" && ?status = "Approved")

}

5. Which (Judge) deals with the most cases in /Year/”2022”?

select ?name (COUNT(?case)AS ?count) where {

?case ono:judgedBy ?judge.

?judge rdfs:label ?name.

?case a ono:Case.

?case ono:year ?year.

FILTER (?year = "2022")

}group by(?name)

order by desc (?count)

6. How many (Case) have contested?

select (COUNT(?case)AS ?contest_count) where {
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?case a ono:Case .

?case ono:result ?result .

?case ono:defendant ?defendant.

FILTER (regex(?result, "The respondent contested" ))

}

7. What are failure rates on /Topic/”4”?

select ?rate (?y/?x AS ?rate) where {

{

select (COUNT(?case_a)AS ?x) where{

?case_a a ono:Case.

?case_a ono:topic ?topic_a.

FILTER (?topic_a = "4")

}

}

{

select (COUNT(?case)AS ?y) where{

?case a ono:Case.

?case ono:topic ?topic.

?case ono:result ?result.

FILTER (?topic = "4")

FILTER (REGEX(?result, "dismissed") ||

REGEX(?result, "refused"))

}

}

}

8. The ratio of (Precedent) : (Statue) in (Case).

select ?case (COUNT(?citation)AS ?citation_count)

(COUNT(?statue)AS ?statue_count) where {

?citation ono:citedBy ?case.

?citation a ono:Case.

?statue ono:citedBy ?case.

?statue a ono:Case.

{

select ?case where{

?case a ono:Case.

?case rdfs:label ?case_name.
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}

}

}group by(?case)

9. What is the most frequently used (Statue-Act)?

select ?act_name (COUNT(?case)AS ?c) where {

?case ono:citeStatue ?act.

?act a ono:Act.

?act rdfs:label ?act_name.

}

group by (?act_name)

order by desc (?c)

10. What (Legal Document) can support my case on /Topic/”5”?

select DISTINCT ?document_name where {

?case a ono:Case.

?case ono:topic ?topic.

?case ono:citeStatue ?document.

?document rdfs:label ?document_name.

FILTER (?topic = "5")

}

The returned results show that the knowledge graph can answer the above questions

correctly and accurately.

4.4 Knowledge Extraction

Difficulties Statement

• How to gather required data.

There are no existing data sets, only publicly available official government websites.

The primary question is how to get the required information from the available re-

sources. For this problem, the author selects a series of crawler tools. The question

then shifted to how to get the required data on a web page, i.e., positioning condi-

tions. In Chrome’s developer mode, developers can browse the web page source code

and write corresponding positioning conditions based on HTML and CSS syntax.
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• How to handle exceptional cases.

Individual cases may have exceptional circumstances, such as complex case titles,

lack of Docx files, unusual metadata, etc. The code should consider not only the

general case but also the particular case to enhance the code’s robustness. It also

includes data cleaning.

• How to find the best parameters for LDA model.

The LAD model has a crucial parameter that is n components(number of top-

ics). In order to find the best values for the parameters, a function in Scikit-

learn(LdaModel.log perplexity) can be applied to compare the results. Perplexity

is a statistical measure of how well a probabilistic model can predict a sample. The

lower the perplexity score, the better the generalization performance is indicated.

Language and Tool

• Semi-Structured Data: Python (language) + BeautifulSoup(library) + Selenium(library)

• Unstructured Data: Python (language) + Blackstone(library)

• Label: Latent Dirichlet allocation(model) + Scikit-learn[3](library)

4.4.1 create repository crawl

The key is the combination of library features and positioning conditions. Below is the

code to gather case links from every page of the websites.

table = driver.find_elements_by_xpath(

"//table[@class=’table alfresco-table’]/tbody//td[2]")

for td in table:

a = td.find_elements_by_tag_name(’a’)

for item in a:

text = item.get_attribute(’href’)

if text.endswith(’pdf’):

urls.append(text)

Below are the conditions to find the needed metadata from the HTML page.

downloaddoc = driver.find_element_by_partial_link_text(’.docx’)

title = soup.find("div", {"class": "alfresco-title"})

.find("div", recursive=False).text.strip()

details = soup.find("div", {"class": "alfresco-properties"})

.findAll("div", recursive=False)
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composition = soup.find("div", {"class": "alfresco-comp"})

.find("div", recursive=False)

4.4.2 create repository nlp

Below is the code to apply Blackstone to complete the Named Entity Recognition task

and establish the structured data.

def get_results(text, citation):

nlp = spacy.load("en_blackstone_proto")

doc = nlp(text)

sentence_segmenter = SentenceSegmenter(nlp.vocab, CITATION_PATTERNS)

nlp.add_pipe(sentence_segmenter, before="parser")

# Narrow the extraction to reduce the number of special cases that need

to be processed.

results = {

’CITATION’: [],

’INSTRUMENT’: []

}

for ent in doc.ents:

if ent.label_ in results.keys():

if ent.text not in results[ent.label_]:

tmp = str(ent.text).replace("[", "").replace("]",

"").replace(" ", "_")

# Deal with the situation that the model will also extract

its own case number in the citation.

if ent.label_ == ’CITATION’ and tmp == citation:

continue

results[ent.label_].append(ent.text.strip().replace("\n", "

"))

return results

4.4.3 create repository topic

Below is the code to build an LDA model and use it to determine cases’ topics.

# Build model and train.

vectorizer = CountVectorizer(min_df=5, max_df=0.9,

stop_words=’english’, lowercase=True,
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token_pattern=’[a-zA-Z\-][a-zA-Z\-]{2,}’)

lda_model = LatentDirichletAllocation(n_components=NUM_TOPICS,

max_iter=10,learning_method=’online’)

topic_scores = lda_model.transform(vectorizer.transform(document_list))

# Decide each document’s topic.

topic_list = []

for doc in topic_scores:

temp = doc.tolist()

topic = temp.index(max(temp)) + 1

topic_list.append(topic)

Below is the code to train the LDA model with the number of topics from 5 to 15 and

observe the perplexity scores, i.e., model performance, for the different topics.

precom = []

for i in range(5,16):

lda_model = models.LdaModel(corpus=corpus, num_topics=i,

id2word=dictionary)

precom.append(lda_model.log_perplexity(corpus))

>> [-8.039661683398652, -8.05545537835374, -8.064944671305442,

-8.076615081337685, -8.088781621325323, -8.099291910926855,

-8.116034851310102, -8.13002214534761, -8.139280313174476,

-8.161920375172803, -8.172038281568707]

Even though the scores continued to go lower, the author prefers 10 over 15 to avoid the

risk of overfitting due to the small data set (the scores dropped significantly between 9

and 10).

4.5 Knowledge Integration

Difficulties Statement

• How to create a mapping to a third-party database.

By observation, most conversions of judges fit the ”Name J.” pattern. For cases

that do not fit the pattern, handcrafted dictionaries are created for mapping.

• How to generate a globally unique code.

There are many ways to generate a unique identifier, for example, generating random

integers, using UUIDs, and creating a mapping based on actual values using CRC32

or MD5Sum. Considering data size, collision rate and character length, the author
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truncates the characters generated by UUIDs with some minor risk by using the

first 4 (104 = 10000) hex characters, that is, DIGITS=4, converting those to an int

and then putting each ID in the uniqueness loop check.

• How to extract and process strings.

Regular expressions are the basic skills to deal with this problem and are suitable for

format verification, information extraction, illegal name filtering and other scenarios.

Language and Tool

• Third-party Database: Wiki Data + Electronic Irish Statute Book

• Data Alignment: Python (language) +Wikipedia(library) + BeautifulSoup(library)

4.5.1 create repository link

Below is the code to fetch the judges’ links from Wikipedia.

def generate_df(page, level):

judges = []

judges_links = []

soup = BeautifulSoup(page.html())

# Positioning conditions

table = soup.find("table", {"class": "wikitable"})

judge_links = table.find_all(’a’, attrs={’title’: True}, href=True)

for judge in judge_links:

judge_ = judge.text

# Deal with general and special cases.

if judge_ in list(mapdic.keys()):

judges.append(mapdic[judge_])

else:

tmp = judge_.split(" ")

judges.append(tmp[1] + " J.")

judges_links.append(’https://en.wikipedia.org/’ + judge[’href’])

d = {’Court’: [level] * len(judges), ’Judge’: judges, ’Link’:

judges_links}

return pd.DataFrame(d)

def wiki_judge_link():

wikipedia.set_lang("en")
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# Fetch Wiki page

high = wikipedia.page("List_of_judges_of_the_High_Court_(Ireland)")

supreme =

wikipedia.page("List_of_judges_of_the_Supreme_Court_of_Ireland")

appeal =

wikipedia.page("List_of_judges_of_the_Court_of_Appeal_(Ireland)")

d_high = generate_df(high, ’High Court’)

d_supreme = generate_df(supreme, ’Supreme Court’)

d_appeal = generate_df(appeal, ’Court of Appeal’)

df = pd.concat([d_high, d_supreme, d_appeal])

return df

Below is the code to generate UUIDs.

original_ids = instrument_link[’Instrument’].unique()

new_ids = {cid: int(uuid.uuid4().hex[:DIGITS], base=16) for cid in

original_ids}

instrument_link[’Instrument ID’] = instrument_link[’Instrument’].map(new_ids)

Below is the condition to extract detail and body information from Instrument.

year = re.match(r’.*([1-3][0-9]{3})’, row[’Instrument’])

detail = re.findall(r’\(.*?\)|\d*\/.*’, row[’Instrument’])

4.5.2 create repository dic

Below is the code to expand nested arrays in the column into rows in another file.

def generate_citation(case_all):

dic = {’Neutral Citation’: [], ’Citation’: []}

for index, row in case_all.iterrows():

tmp = row[’CITATION’].strip(’[]’).split(’,’)

for item in tmp:

# Format conversion

cit = item.strip()[1:-1].replace(’[’, ’’).replace(’]’,

’’).replace(’ ’, ’_’)

# Extract only valid references that match the format

matchObj = re.match(r’\d{4}_[a-zA-z]{4}_\d+’, cit)

if matchObj:
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dic[’Neutral Citation’].append(row[’Neutral Citation’])

dic[’Citation’].append(matchObj.group())

citation = pd.DataFrame(dic)

citation.drop_duplicates(inplace=True)

return citation

4.6 Recommendation algorithm

Difficulties Statement

• How to implement graph embedding.

At first, the author referred to Section 2.2 Project 7 and adopted the DeepWalk

model, but DeepWalk can only apply to homogeneous graphs, not to heterogeneous

ones. Therefore, the author chooses the MetaGraph2Vec model, which is based on

the DeepWalk but improved for heterogeneous graphs. The structure of the dataset

is similar to that of the ACM dataset. Therefore, the authors also refer to the

performance of each model on the ACM dataset.

ACM dataset Micro-F1 Macro-F1 NMI
DHNE 0.7201 0.7007 0.3280
HAN 0.8401 0.8362 0.4241

HeGAN 0.8308 0.8276 0.4335
Metapath2vec(PAP) 0.7823 0.7725 0.2828
MetaGraph2vec 0.8085 0.8019 0.5095

PTE 0.7624 0.7543 0.3781

Table 4.7: HetG embedding model comparison on ACM dataset[4]

• How to use the features of the graph after dimension reduction.

The system’s goal is to recommend, while the model’s output is a feature matrix. A

proper bridge must be found between the two, where similarity comes in. There are

various similarity measures such as Persson correlation, Cosine similarity, Jaccard

similarity, Spearman Rank Correlation, etc. Among them, Persson correlation and

Cosine similarity are the most commonly used method, while the former is to find

a linear correlation between two vectors, and the latter is to calculate the cosine

angle between these vectors[1]. The author prefers to consider the relationship of

all nodes at once, so cosine similarity is chosen as the metric.

• How to get labels for model training.

MetaGraph2Vec is a semi-supervised model, so the system needs labels to improve
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the model performance and thus produce good recommendation results. Due to the

lack of corresponding information in the official data source, the author can only use

a clustering model (unsupervised model) to label the categories to which each node

belongs as labels. According to Section 2.2 Project 4& 6& 9, the author argues that

the LDA model is more relevant to the problem scenario than the SVM model and

that the topic to which the case belongs can be considered the category to which

the case belongs. It is worth noting that the annotation generated by clustering is

feasible but cannot achieve the accuracy of manual labelling.

Language and Tool

• Graph Embedding: MetaGraph2Vec(model)

• Knowledge Update: SPARQL(language) + SPARQL Wrapper[39](library)

4.6.1 OpenHINE

OpenHINE[4] is an open-source toolkit for Heterogeneous Information Network Embed-

ding. It implements many popular models, including DHNE, HAN, HeGAN, HERec,

HIN2vec, Metapath2vec, MetaGraph2vec, and RHINE. Here we choose MetaGraph2vec.

output/embedding/MetaGraoh2Vec/test node.txt: This is the ultimate file we need

for similarity calculation.

p19656 0.076290965 -0.06172059 -0.1518152 0.07601022 0.13944595 -0.09014524

-0.11957887 0.14623547 -0.12914641 -0.07518722 -0.15120642 -0.14260426

0.14509615 0.05379134 -0.15115607 0.14265539 0.063791186 -0.08120041

0.061679743 -0.14567123 0.14420219 0.114089146 0.037378863 0.09723315

0.057445735 -0.14002267 0.1517213 -0.08478357 -0.09782345 -0.14996529

0.15285838 -0.1372418 -0.14112075 0.13776636 0.112719044 -0.13258146

0.05495679 0.15133242 0.055032577 -0.0703112 -0.07609697 0.096910365

-0.062505595 0.053169772 -0.12044188 0.024641298 -0.13994785 0.14944553

0.1415161 -0.14698099 0.084385395 0.111259066 0.09012766 0.13024577

0.15127277 0.13676456 0.14197007 -0.068906695 0.0694399 0.11988271

-0.0591615 0.1413959 -0.0754143 0.15167172

output/tmp/MetaGraoh2Vec/graph rw.txt: This is a temporary file containing the

metapath generated by the random walk.

a1303 p14783 c43255 p56370 t35952 p56370 c15384 p56370 c15384 p37693 t63669

p37693 t36623 p19101 c47478 p37693 c13049 p19101 t8502 p19101 c13049
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p37693 t63669 p37693 c47478 p37693 c15384 p37693 c47478 p19101 t8502

p37693 a59347 p13973 a59347 p61531 c31500 p36015 a25571 p10866 c63146

p64436 a46967 p7381 t64975 p7381 t11172 p7381 t13878 p7381 c51520 p7381

t11172 p7381 t11172 p7381 t9287 p7381 a46967 p57644 c31429 p52818 c12840

p52818 c12200 p16779 c12200 p44561 t31254 p2981 a37106

4.6.2 recommend

Below is the code to calculate the cosine similarity of the embedding matrix in order to

rank the top 8 as recommendations.

def sortSparseMatrix(m, rev=True, only_indices=True):

col_dict = dict()

for i in range(m.shape[0]):

d = m.getrow(i)

s = zip(d.indices, d.data)

sorted_s = sorted(s, key=lambda v: v[1], reverse=True)

if only_indices:

col_dict[i] = [element[0] for element in sorted_s]

else:

col_dict[i] = sorted_s

return col_dict

def recommend(embedding, query_case):

embedding.set_index(0, inplace=True)

index_list = list(embedding.index)

# Find the index of the input case

index = index_list.index(query_case)

A_sparse = sparse.csr_matrix(embedding)

# Calculate similarity

similarities_sparse = cosine_similarity(A_sparse, dense_output=False)

# Rank similarity

rec = sortSparseMatrix(similarities_sparse)[index]

recommendation = []

# Only return Case or Statue

for i in rec:

if ’p’ in index_list[i] or ’c’ in index_list[i] and i != index:

recommendation.append(index_list[i])

return recommendation[0:8]
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4.6.3 process input case id

As mentioned, there are two scenarios, one in which the neutral citations entered by the

user exist in the database and the other in which they do not. This file is written for the

latter scenario, which requires obtaining information related to the case to generate the

nodes, adding them to the existing knowledge graph and then re-training the model to

get the new embedding matrix output. The process of the user input is similar to creating

a repository, except that the order of magnitude is different.

4.6.4 execute graph query

In this file, various interfaces are written using SPARQL Wrapper to execute SPARQL

queries in order to support the recommendation and update the database.

• query case exist(self, neutral citation):

• query recommendation(self, recommend list):

• query case info(self, neutral citation):

• query judge info(self, neutral citation):

• query statue info(self, neutral citation):

• query statue info by id(self, statue id):

• query citation info(self, neutral citation):

• query statue id by name(self, name):

• query citation id by name(self, name):

• insert new case info(self, dic):

• delete new case info(self, dic):

Below is the code to check if a case is in the database.

def query_case_exist(self, neutral_citation):

query_str = """

PREFIX ono: <http://www.yuxin.com/law/ontologies/2022/>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

SELECT ?id WHERE {

47



?case a ono:Case.

?case rdfs:label ?case_name.

FILTER (?case_name = ’""" + neutral_citation + """’)

FILTER EXISTS { ?case ono:hasLink ?link . }

?case ono:hasCitationID ?id.

}"""

self.sparql.setQuery(query_str)

try:

ret = self.sparql.queryAndConvert()

result = ret["results"]["bindings"]

if len(result) == 0:

return False

else:

for r in result:

r_ = r[’id’][’value’]

if str(r_).startswith(’p’):

return r_

except Exception as e:

print(e)

It is worth noting that additional authentication is required when performing insert/delete

queries, and the POST method should be used instead of GET.

self.sparql.setHTTPAuth(DIGEST)

self.sparql.setCredentials("Name", "Password")

self.sparql.setMethod(POST)

self.sparql.setQuery(query_str)

4.7 Summary

This chapter lists the code files of the three modules according to the pipeline diagram

and isolates the ontology and dataset for further explanation.

The Dataset section is divided into data for the ontology and data for the model, while

the former is the basis for the latter and the latter is a re-transformation of the former.

The description of this section focuses on the structure and content of each data file.

The subsequent sections are presented in three perspectives: Difficulties Statement, Lan-

guage and Tool, and Implementation Snippets. Difficulties Statement states the problems

and solutions encountered in the implementation and reflection processes. Language and
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Tool gives the conclusion of the choice. Implementation Snippets are the critical code and

comments corresponding to the problem encountered.

The Ontology section mainly states the solution for nested arrays and recursive entities.

An intuitive presentation of the database can be found in Section 4.3.2. Feasible queries

for the Competency Questions raised in the previous chapter can be found in Section

4.3.3. The Knowledge Extraction section mainly discusses the solution to gathering data

and label problems. The Knowledge Integration section mainly states the solution to

processing data. The Recommendation algorithm section mainly states the selection of

models and methods. See the code snippets in each section for details of the solutions.
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Chapter 5

Evaluation

This Chapter consists of four parts: ontology, model, system, and overall evaluation.

Among them, the Overall Evaluation was only designed but not executed to collect feed-

back due to time and personnel factors. Good results were achieved in the rest of the

evaluation, with minor ontological defects in the Ontology Evaluation Section(5.1), 72%

macro-f1 scores in the Model Evaluation Section(5.2)and 48.15% system validity (≫ prob-

ability of correct random recommendation: 5.29%) in the System Evaluation(5.3).

5.1 Ontology Evaluation

For the ontology evaluation, we use the tool OOPS(Ontology Pitfall Scanner)[26], an on-

line ontology evaluation to assess the reliability and integrity of the ontology.

The result shows that ontology has four classes of minor and two classes of important

problems. Since many entities have ”Range” in the default string format, it would be

easier to retrieve them by leaving them blank. Since the research does not have the plan

to publish the ontology, the license problem can also be ignored. The report’s details can

be found in Appendix .1.

SPARQL queries for each Competency Question (Section 4.3.3) are also a form of ontology

evaluation. Some of the results of the queries can be found in Appendix .2. However, read-

ers can also download the relevant files from the Github repository (Ontology/ono.owl and

Output/mapping.output.ttl), import them into GraphDB, and execute the corresponding

queries to see the results.

Overall, according to its evaluation report and query results, the ontology is relatively

accurate and reliable compared to its initial claims (Competency Questions).
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5.2 Model Evaluation

Model parameter vs. Model Hyperparameter

The model parameters are configuration variables within the model whose values can be

estimated from the data. They are usually summarized from past training data.

The model hyperparameters are configurations external to the model, and their values

cannot be estimated from the data. The model hyperparameters are set manually and

are used in the process to help estimate the model parameters.

Experiment purpose

The purpose of the experiment is to determine better hyperparameters. Based on this, the

better parameters are trained by the model itself. Appropriate model hyperparameters

and model parameters are required to produce good model performance. The model’s

performance is equivalent to the accuracy of the embedding matrix it gives. Thus, evalu-

ating the model’s performance equals evaluating the credibility of the model’s embedding

matrix (graph eigenvalues). When the model performs poorly, the embedding matrix-

based recommendations are bound to be inaccurate. An essential step to getting valid

recommendations is to improve the model’s performance.

Indicator explanation

There are differences in the calculation methods of micro-F1 and macro-F1. In the case

of highly unbalanced data, micro f1 can only reflect a large class sample size. Since

the amount of data under each category is not as much but differs significantly, that is

unbalanced data, so macro-f1 is better than micro-f1 in our situation. F1-score = 1 is

the best value (perfect precision and recall); the higher the NMI, the more information is

shared between nodes; the lower the loss is, the better our model works.

Cross-validation schema

Cross-validation schema is 80% training set, 20% testing set. The model will use the label

as a correct criterion to gradually adjust the understanding of the graph. The model learns

on 80% of the data, then uses the unseen 20% of the data to evaluate the learning effect,

i.e., model performance.
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Optimization algorithm

The sparse Adam algorithm is used. The parameters of the model determine the way the

model is represented. An optimization algorithm is an effective tool for estimating model

parameters to achieve better metric values.

5.2.1 Hyperparameter Experiment Results

In the following five experiments, two control groups (Experiment 1 & 2 and Experiment

3 & 4 & 5) are set up to explore the choice of the three hyperparameters (num walks,

walk length, epoch). Also, observe how much of the model’s optimal performance can be

achieved under each experiment.

When num walks=50, it takes 25 epochs to achieve relatively acceptable performance

with Macro F1 = 70%.

17 18 19 20 21 22 23 24 25
MacroF1 0.69 0.695 0.7 0.705 0.7 0.69 0.695 0.695 0.7
NMI 0.4982 0.4981 0.404 0.5003 0.5075 0.5008 0.5038 0.5059 0.5064
Loss 2.4703 2.4046 2.3432 2.2876 2.2334 2.1855 2.1384 2.097 2.0618

Table 5.1: Experiment 1: num walks=50, walk length=100, epoch =25

When num walks=70, it takes 15 epochs to achieve relatively acceptable performance

with Macro F1 = 72%.

7 8 9 10 11 12 13 14 15
Macro f1 0.61 0.655 0.675 0.685 0.7 0.705 0.715 0.725 0.72
NMI 0.4717 0.4851 0.4939 0.4981 0.5071 0.5106 0.5019 0.5045 0.5107
Loss 2.7341 2.7041 2.6594 2.5912 2.5032 2.4066 2.3134 2.2311 2.1584

Table 5.2: Experiment 2: num walks=70, walk length=100, epoch=15

When num walks=100, it takes 10 epochs to achieve relatively acceptable performance

with Macro F1 = 72.5%, while walk length=70.

2 3 4 5 6 7 8 9 10
Macro f1 0.26 0.365 0.43 0.565 0.645 0.675 0.685 0.705 0.725
NMI 0.0725 0.1092 0.3761 0.4397 0.5039 0.4903 0.4958 0.5073 0.5141
Loss 3.2092 2.8974 2.8 2.7523 2.7194 2.67896 2.6107 2.5082 2.399

Table 5.3: Experiment 3: num walks=100, walk length=70, epoch=10
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When walk length=50, Macro F1 = 68%.

2 3 4 5 6 7 8 9 10
Macro f1 0.29 0.305 0.435 0.46 0.58 0.65 0.655 0.665 0.68
NMI 0.068 0.0696 0.2501 0.3962 0.4551 0.4547 0.4698 0.4711 0.4834
Loss 3.3871 3.0083 2.8687 2.8045 2.7658 2.7347 2.7009 2.649 2.5744

Table 5.4: Experiment 4: num walks=100, walk length=50, epoch=10

When walk length=100, Macro F1 = 69.5%.

2 3 4 5 6 7 8 9 10
Macro f1 0.295 0.415 0.645 0.645 0.665 0.675 0.695 0.705 0.695
NMI 0.0714 0.2839 0.48 0.48 0.4962 0.5131 0.5128 0.5182 0.5059
Loss 3.0624 2.8185 2.7488 2.7113 2.6614 2.5655 2.4306 2.2933 2.1718

Table 5.5: Experiment 5: num walks=100, walk length=100, epoch=10

5.2.2 Experiment Conclusion

It is concluded that a more significant number of walks leads to convergence with fewer

epochs (Experiment 1 vs Experiment 2). The length of walks affects the final performance

of the model, where 100 is too large, and 50 is too small, with the final score less than

70% (Experiment 3 vs Experiment 4 vs Experiment 5). The best macro f1 score of the

model is 72%, which is acceptable performance.

Figure 5.1: Experiment 3 Statistic Figure

The best performance works with the hyperparameter as follows:

num walks walk length neg num window size batch size alpha epochs lr decay
100 70 5 5 64 0.001 10 0.001

53



5.3 System Evaluation

To evaluate the system’s recommendation results more objectively, the author customises

a metric using the specificity of certain cases and calculates the probabilistic results to

compare with the probability of the recommendation given randomly by the system.

This metric is only a rough prediction of the system’s recommendation performance when

there is a lack of manual evaluation, and the final evaluation will be based on the manual

evaluation.

Dual attributes case definition

Unlike in actual use, Statue is not included in the recommendation list when performing

the system evaluation. A dual-attribute case is a case that is itself a case and is also cited

by other cases, which can be defined as the equation below:

z ∈ Case, z =

{
1, z ∈ CitationList(any),

0, z /∈ CitationList(any).

The following code filters all cases of dual attributes, getting Num.(Z) = 189.

case = pd.read_csv("case_all_with_topic_id.csv")

citation = pd.read_csv("citation.csv")

common = [x for x in list(citation[’Neutral Citation’]) if x in

list(citation[’Citation’])] # Common Elements

len(set(common)) # 189

Recommendation valid criteria

The author assumes a strong connection between the case and its cited cases. Therefore,

it is reasonable for the cited cases to appear in the recommendation list. For cases with

dual attributes, the author believes the precedent it is cited should appear in its recom-

mendation list. The recommendation is valid if the precedent citing the case is in the rec-

ommendation list and vice versa. For example, 2021 IECA 322 cited by 2021 IECA 344,

therefore 2021 IECA 344 should be in the recommendation list of 2021 IECA 322. The

valid recommendation criteria can be defined as the equation below:

x ∈ Z, x ∈ CitationList(y), x =

{
1, y ∈ RecommendList(x),

0, y /∈ RecommendList(x).

54



System Validity

V alidity =

∑N−1
n=1 x∑N
n=1 z

,N = 189 (5.1)

Validity = Number of cases that meet recommendation valid criteria / Number of cases

of dual attributes.

5.3.1 Topic speculation

Under each topic, the author selects the most frequently occurring cases to observe their

recommendation results while inferring the topic’s meaning based on the recommendation

results. The following code counts the frequency of occurrence of each dual property case

and sorts the dictionary. The most frequently occurring dual property cases under each

topic are used as samples.

count = {}

for i in common:

if i not in count.keys():

count[i] = 1

else:

count[i] = count[i] + 1

dict(sorted(count.items(), key=lambda item: item[1], reverse=True))

>> {’2022_IEHC_393’: 42,

’2022_IEHC_167’: 35,

’2021_IECA_337’: 34,

......}

Topic Number Sample Occurrence frequency Topic speculation
1 2021 IECA 322 20 Criminal Trafficking
2 2022 IEHC 83 12 Planning and Development
3 2022 IEHC 393 42 Natural Planning
4 2022 IEHC 141 10 Illegal Immigration
5 2022 IEHC 167 35 Court Service
6 2020 IECA 159 7 Criminal Arrest
7 2021 IEHC 773 11 Landlord and Tenant
8 2020 IECA 184 25 Illegal Immigration
9 2021 IECA 248 20 Land and Conveyancing
10 2021 IECA 1 16 Citizens and Communities

Table 5.6: Topic speculation

After browsing through all the recommendations, topic speculations are made in Ta-
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ble 5.6. Among them, Topic 2 and Topic 3, Topic 4 and Topic 8 are very similar. The

recommendation results of the above samples are available in the GitHub repository

(https://github.com/kongkongYuki/YuXin/tree/main/Output/Recommendation).

5.3.2 Analysis of the reasons for recommendation

The observation of samples’ recommendation results leads to the following discoveries:

• All the recommendations are on the same topic.

• Recommended Statues frequently appear in the statute list cited in the recom-

mended cases.

• The model does not use the citation directly.

Discovery 1 is intuitive because the system learns the information from the graph using

the topic label as the correct answer. A qualified recommendation algorithm should be

able to classify cases accurately. Discovery 1 verifies that the primary factor influencing

the recommendation is the topic.

Discovery 2 is also intuitive because the recommendation algorithm gives Statue the heav-

iest weight(3). Discovery 2 verifies that statute is also an essential factor to consider when

making recommendations.

There are situations where the citation is not included in the precedent recommenda-

tion list for Topic 2 and Topic 3 because the target case (2022 IEHC 327) of Topic 2

(2022 IEHC 83) is classified as Topic 3 while the target case (2022 IEHC 395) of Topic

3 (2022 IEHC 393) is classified as Topic 2. There are three target cases for Topic 8

(2020 IECA 246 & 2022 IECA 89 & 2021 IECA 106). Only 2021 IECA 106, accurately

classified as Topic 8, is in the recommendation list. The recommendation of the rest of

the topics proves to be valid. This phenomenon is the negative outcome of Discovery 1.

It also shows that the model does not give recommendations directly based on citations,

which is Discovery 3.

5.3.3 Recommendation efficiency

Hypergeometric Distribution

Define the situation in which the system’s random recommendation is valid: Randomly

select n cases from N different cases, where there are M target cases among N cases. In

the absence of put-back sampling, the probability of the existence of k target cases among
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the selected n cases is:

Pk =
Ck

MCn−k
N−M

Cn
N

, 0 ≤ k ≤ min(n,M) (5.2)

which is the hypergeometric distribution formula in probability theory.

Assume that there is one and only one target case in the whole group, thus, Ck
M = C1

1 .

N = 189, n = 10,M = 1, k = 1, the probability of a correct random recommendation is

P1 =
Ck

MCn−k
N−M

Cn
N

=
C1

1C
10−1
189−1

C10
189

= 0.0529

according to the Formula 5.2.

System Validity Calculation

The following code calculates the value of Equation 5.1. When the system returns 10

recommended cases,

V alidity =
91

189
= 0.4815 ≫ P1 = 0.0529

which proves the system effectiveness.

for com_case in list(set(common)):

com_id = case_id.loc[com_case][’Graph_ID’]

embedding = pd.read_table(EMBEDDING_PATH, names=list(range(0, 65, 1)),

sep=’ ’)

recommendation, evaluation = recommend(embedding, "p" + str(com_id))

case = [int(item.replace(’p’, ’’)) for item in recommendation if

item.startswith(’p’)]

cit = list(tmp.loc[tmp[’Citation ID’] == com_id][’Graph_ID’])

common = set(case) & set(cit)

if len(list(common)) > 0:

count = count + 1

else:

invalid.append(com_case)

print(count)

print(invalid)
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5.4 Overall Evaluation

5.4.1 Questionnaire

After discussing with a lawyer, the author designed a questionnaire to determine who

is more critical in the Common Law system, keywords or citations (Question 2). And

if citations are more important, how important are they ultimately (Question3 & 5 )?

The lawyer mentioned those different regions might have different outcomes on the same

case(Question 4). Question 5 is a ranking of all the indicators involved in the system.

• Do you think the system has practical value?

• For case search, which do you think is more important: keywords or citations?

• At least, to what level of granularity should citations be refined?

• Do you think the system needs to be filtered for regions?

• Please rank the following items in order of importance in your mind (Court, Status,

Date, Result, Judge, Plaintiff/Defendant, Precedent, Statue, Keyword, Category).

The author interviewed three students pursuing the LLM degree at Trinity Colledge

Dublin. The interview transcripts are in the Appendix .3. The following is the author’s

summary based on the interviews:

1. The system has value, but mainly as a secondary support function. Keywords and

citations are two stages in the retrieval process. After the relevant precedents are

retrieved through keywords, the citation of precedents becomes the focus. But a

complete system always starts with keywords and then citations.

2. It is necessary but not urgent to distinguish regions. The scope of use of a precedent

is limited for case-law countries, especially regarding specific cases such as regional

jurisdiction. But it will not be of much use for legal research.

3. The granularity of citation should effectively avoid the secondary search. It should

summarize the core points of relevant precedents - ”denial of this precedent”, ”con-

tinuation of this precedent”, ”similar to this precedent”, and ”previous relevant

precedent of this precedent” or at least be precise to the article.

The next step is refining questions into multiple choice questions, distributing the online

questionnaire to 30 Irish law students, and analysing the data results.
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5.4.2 Feedback

The author designed a feedback test as a convincing, unbiased and comprehensive system

evaluation. The author plans to invite ten non-legal professionals and ten legal profession-

als to rate their satisfaction with Competency Questions’ query results, and the system’s

recommendation results meet their requirements from 0 to 10. Also, the authors will

collect additions from respondents on the Competency Questions.

The next step will be to deploy a simple web portal, combined with GraphDB APIs, the

system’s APIs and a new rating API, on a public web server for respondents to access

online. See Appendix .4 where the system interface has been implemented. The number

of recommendations will be reduced to 5 to reduce the time required for respondents to

evaluate the recommendations.
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Chapter 6

Conclusions

6.1 Primary Contributions

This research set out to optimize the current case search experience of public platforms

by applying the knowledge graph to the legal field, under the background that the cur-

rent public platform is dominated by keyword searching and tag filtering. The overall

system consisted of three parts: knowledge extraction, knowledge integration and rec-

ommendation algorithm, involving web crawlers, natural language processing, ontology

construction and graph embedding. This research confirmed the value and feasibility

of combining knowledge graphs and graph embedding for recommendations in the legal

field through three kinds of evaluation at different levels. The achievements obtained

in this research are promising if considered as a complementary feature to the existing

platforms. If this research is considered a reform of the existing platforms, the current

system presents far less functionality. Further studies need to be conducted to improve

the current system.

6.2 Future Work

In order to change the orientation of this research from a complementary feature to a

well-established system, the following additional aspects need to be improved:

1. The involvement of legal professionals

Execute the plans mentioned in Section 5.4 but not completed to collect respondents’

feedback on the current system and incorporate the comments into the scope of the

subsequent system improvements.

2. Explainable reasons for recommendations

Currently, the system can only give the recommendations results, and the author can
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only speculate and analyze the basis of the recommendations based on the results.

The system cannot provide a basis for recommendations other than similarity, which

has no reference value to the user. The solution to this problem must be advanced

in several ways, including expanding the dataset, refining citation granularity, and

incorporating keywords.

3. Explicit label classification

According to Section 5.3.2, the label is critical to the recommendation result, and

the current topic classification has errors. Explicit label classification is essential

to improve model recommendations. While the clustering method often does not

achieve the desired accuracy. Label relies on reliable data sources or extensive

manual labelling; the former solution is more feasible than the latter.

4. Refinement of citation granularity

According to the answers to the questionnaire in Section 5.4.1, the granularity of

the citation should be refined to avoid secondary search. This problem requires a

classification of the different precedents cited in the same case, and the citation of

the law needs to be precise to the article.

5. Combination with keyword

According to the answers to the questionnaire in Section 5.4.1, for a complete system,

keywords and applications should be used in combination, first with keywords and

then with citations. The recommendation algorithm will include two layers, one for

information retrieval and filtering and one for graph embedding recommendation.

6. Dataset

(a) Gather more data, not restricted to the word ‘Justice’. Instead, use all cases

rather than a period with little pre-set.

(b) Dig for information in the judgment and other metadata columns like the result

column.

7. Model

Introduce more relationship pairs into the graph (now three pairs) and try other

Heterogeneous Graph Embedding models.

6.3 Final Remarks

This research acted according to local conditions, presenting the idea of building knowl-

edge graphs and using graph embeddings to recommend relevant cases to optimize the
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local platforms’ case search experience based on the characteristics of precedents and

statutes cited in Irish legal judgement. Using natural language and crawlers makes it

possible to build databases from original web pages and judgments, enabling the knowl-

edge graph construction. This research also designed a relatively complete and feasible

ontology and system architecture to achieve the research objectives and implemented a

specific project using various tools. After that, this research evaluated the feasibility and

effectiveness of the system step by step at three levels (ontology, model, system) and

achieved promising results. This dissertation conducted a comparatively comprehensive

study and achieved results/contributions within expectations.

The Irish judgement dataset from the research has the potential to be published on Ire-

land’s Open Data Portal. There is an opportunity to publish the research’s Knowledge

Graph as Linked Open Data and link some of the Knowledge Graph entities into non-legal

data sources to enrich the context of judgements. The potential possibilities/benefits of

applying a knowledge graph approach to the legal system are to enhance and enrich the

existing tag filtering search methods. Also, the recommendation system based on citation

relationships can work as a feature to enhance the search experience after locating cases

with keywords.
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Appendix

.1 OOPS report

Figure 1: Oops! Ontology Report
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.2 Query Result

• Question 4: How many [Case] have contested?

"results" : {

"bindings" : [

{

"contest_count" : {

"datatype" : "http://www.w3.org/2001/XMLSchema#integer",

"type" : "literal",

"value" : "38"

}

}

]

}

• Question 6: What are failure rate on /Topic/(4)?

"results" : {

"bindings" : [

{

"rate" : {

"datatype" : "http://www.w3.org/2001/XMLSchema#decimal",

"type" : "literal",

"value" : "0.156862745098039215686275"

}

}

]

}

• Question 8: What is the most frequently used [Statue-Act]?

"results" : {

"bindings" : [

{

"act_name" : {

"type" : "literal",

"value" : "European Arrest Warrant Act"

},

"c" : {

"datatype" : "http://www.w3.org/2001/XMLSchema#integer",
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"type" : "literal",

"value" : "105"

}

},

{

"act_name" : {

"type" : "literal",

"value" : "Legal Services Regulation Act 2015"

},

"c" : {

"datatype" : "http://www.w3.org/2001/XMLSchema#integer",

"type" : "literal",

"value" : "85"

}

},

......

.3 Questionnaire

.3.1 Respondent 1:

• Do you think the system has practical value?

Have practical value. Because whether we do legal research or practical research,

we have to do case studies. A case study would require a case search based on

keywords, cause of action, or different laws. The legal case search tools that exist

in the market do not have much functionality to recommend legal-related cases.

• For case search, which do you think is more important: keywords or citations?

Keywords. Because in all cases there are corresponding keywords, for example,

civil, criminal, and administrative are the keywords on legal categories; borrowing,

lending, and contract assignment are the keywords on the parties’ behaviour. The

citation function is also important, but I think it should be used as a secondary

tool.

• At least, to what level of granularity should citations be refined?

The respondent misunderstood the question. The Respondent discussed the granu-

larity of the keywords.

• Do you think the system needs to be filtered for regions?
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This feature should be available but not necessary. Because it will not be of much

use to the region for legal research. But this is not absolute; if it is a matter of

regional jurisdiction or a dissenting appeal, the region will be a more important

factor.

• Please rank the following items in order of importance in your mind (Court, Status,

Date, Result, Judge, Plaintiff/Defendant, Precedent, Statue, Keyword, Category).

Statue >Precedent >Status >Keyword >Category >Court >Plaintiff/Defendant

>Date >Judge >Results

.3.2 Respondent 2:

• Do you think the system has practical value?

I’m not very clear on how this system works, so can only answer based on my

general understanding. The retrieval of precedents is meaningful for the common

law system, and the key to retrieval is how to find the precedents that are most

relevant to the facts to be retrieved. If the system can satisfy the input of relevant

keywords and the final output retrieval results are within a reasonable range (the

more accurate the range of similar cases, the more time can be saved for the user),

then the system is meaningful.

• For case search, which do you think is more important: keywords or citations?

In my opinion, keywords and citations are two stages in the retrieval process. When

you understand the relevant legal facts and need to find relevant precedents, the

initial search can only be done through keywords. Even if it can be designed to

search through the description of the facts of the case, unless the system is intelligent

enough, the search results will still be presented through the search keywords in the

end. After the relevant precedents are retrieved through keywords, the citation of

precedents becomes the focus. From a vertical perspective, a precedent is often

based on overturning or acknowledging the previous precedent. It would be very

meaningful if the precedent could be cited in the precedent. From a horizontal

perspective, it would also be helpful for users if the differences between similar but

different precedents could be presented. These contents are mainly realized through

citation in the main case.

• At least, to what level of granularity should citations be refined?

In addition to showing the basic case number, you can consider using several key-

words to summarize the core points of relevant precedents - ”denial of this prece-
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dent”, ”continuation of this precedent”, ”similar to this precedent”, and ”previous

relevant precedent of this precedent”

• Do you think the system needs to be filtered for regions?

For case-law countries, the scope of use of a precedent is limited. Taking the United

States as an example, it is divided into state and federal courts. The state courts

have the precedents and legislation of the state courts, and the federal courts have

the precedents and legislation of the federal courts. Therefore, it is necessary to

distinguish regions.

• Please rank the following items in order of importance in your mind (Court, Status,

Date, Result, Judge, Plaintiff/Defendant, Precedent, Statue, Keyword, Category).

As mentioned earlier, keywords are the core of searching a case, and regional clas-

sification by courts is also a way. As for other items, they can be juxtaposed as

secondary search classification options.

.3.3 Respondent 3:

• Do you think the system has practical value?

This question is too broad to answer.

• For case search, which do you think is more important: keywords or citations?

Keywords. Citations are only valuable once you have found the case and can find

what you want faster than keywords.

• At least, to what level of granularity should citations be refined?

Generally, when we apply precedent, we need to see how precedent is judged; the

ideal system is to reduce this secondary search. At least, it should be specific to the

article.

• Do you think the system needs to be filtered for regions?

The region may involve the discretion of the judge. Guilty or not guilty will not

make much difference; sentencing may.

• Please rank the following items in order of importance in your mind (Court, Status,

Date, Result, Judge, Plaintiff/Defendant, Precedent, Statue, Keyword, Category).

Not during the search, Status >Results >the remains. During the search, Keywords

>Status >Results >Date >the remains.

The Statute becomes essential when searching for a particular case based on the

Statute, so it is still important to sort it according to the purpose when searching.
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Regarding keywords and citations, it must be keywords first and then citations.

It is not that citations are unimportant, but it is the point at which the question

proceeds that starts to become important.

.4 System Interface
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